\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{displayed category} \hypertarget{displayed_categories}{}\section*{{Displayed categories}}\label{displayed_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{correspondence_to_slices}{Correspondence to slices}\dotfill \pageref*{correspondence_to_slices} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{displayed category} over a [[category]] $C$ is the ``classifying map'' of a category over $C$. That is, it is equivalent to the data of a category $D$ and a functor $F:D\to C$, but organized differently as a ``functor'' associating to each object or morphism of $C$ the [[fiber]] over it. The operation (which is an [[equivalence]]) taking a displayed category to the corresponding functor $F:D\to C$ is a generalization of the [[Grothendieck construction]]. Displayed categories are particularly useful in [[type theory]] (especially [[internal categories in homotopy type theory]]) and to preserve the [[principle of equivalence]], since they allow a more ``category-theoretic'' formulation of various notions (such as [[Grothendieck fibrations]] and strict [[creation of limits]]) that, if stated in terms of a functor $F:D\to C$, would involve equality of objects. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{displayed category} over a category $C$ is a [[lax functor]] from $C$, regarded as a bicategory with only identity 2-cells, to the [[bicategory]] [[Span]]. Better, it is a lax [[double functor]] from $C$, regarded as a [[double category]] ``horizontally'' with only identity vertical arrows and 2-cells, to the (pseudo) double category $Span$ with sets as objects, functions as vertical arrows, and spans as horizontal arrows. Although this produces an equivalent notion, it is better because a \textbf{displayed functor} is then a [[vertical transformation]] between such lax double functors. A displayed category may equivalently be described as a \emph{normal} lax functor from $C$ to [[Prof]] (either the bicategory or the double category, as appropriate), meaning one that strictly preserves identities. Formally, this is because $Prof = Mod(Span)$, where $Mod(-)$ denotes the double category of horizontal monads and modules, and $Mod$ is a [[right adjoint]] to the inclusion of [[virtual double categories]] and normal (lax) functors into all (lax) functors; see \hyperlink{CS}{(CS, Prop. 5.14)}. Equivalently, it is a [[double profunctor]] between $C$ and the terminal double category $1$, i.e., a double presheaf on $C$. \hypertarget{correspondence_to_slices}{}\subsection*{{Correspondence to slices}}\label{correspondence_to_slices} The category over $C$ corresponding to a displayed category $D:C\to Span$ is the pullback \begin{displaymath} \itexarray{ D & \to & Span_* \\ \downarrow & & \downarrow \\ C & \to & Span } \end{displaymath} Where $Span_*=Span(Set_*)$ is the bicategory (or double category) of [[pointed sets]] and pointed spans. This is a strict pullback, which exists in the 2-category of bicategories (or double categories) and lax functors because the projection $Span_* \to Span$ is not just lax but strong. Equivalently, it is the pullback \begin{displaymath} \itexarray{ D & \to & Prof_* \\ \downarrow & & \downarrow \\ C & \to & Prof } \end{displaymath} where $Prof_*$ consists of pointed categories and pointed profunctors, a pointed profunctor $H:(A,a_0)⇸(B,b_0)$ being equipped with an element of $H(a_0,b_0)$. This construction induces an [[equivalence of categories]] $Disp(C) \to Cat/C$, which restricts to the following equivalences: \begin{itemize}% \item A displayed category factors through the inclusion $Set \hookrightarrow Span$ (or equivalently $Set \hookrightarrow Prof$) if and only if $F:D\to C$ is a [[discrete opfibration]]. Similarly, it factors through $Set^{op}$ if and only if $F$ is a discrete fibration. \item A factorization of a displayed category $C\to Prof$ through the inclusion $Cat^{op} \hookrightarrow Prof$ (as co[[representable profunctors]]) is equivalent to giving $F:D\to C$ the structure of a [[cloven fibration|cloven]] [[prefibred category]], i.e. equipped with a choice of weakly cartesian liftings. The factorization is a [[pseudofunctor]] precisely when $F:D\to C$ is a [[Grothendieck fibration]]; in this case we see the usual [[Grothendieck construction]] of a pseudofunctor. \item Similarly, factorizations through $Cat\hookrightarrow Prof$ corresponds to cloven Grothendieck (pre)opfibrations. \item An arbitrary displayed category $C\to Prof$ is a pseudofunctor if and only if $F:D\to C$ is a [[Conduché functor]], i.e. an exponentiable morphism in $Cat$. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The correspondence between categories over $C$ and normal lax functors $C\to Prof$ was observed by \begin{itemize}% \item Jean B\'e{}nabou, \emph{Distributors at work}, Notes by Thomas Streicher from lectures given at TU Darmstadt, 2000, \href{http://www.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf}{http\char58\char47\char47www\char46mathematik\char46tu\char45darmstadt\char46de\char47\char126streicher\char47FIBR\char47DiWo\char46pdf} \end{itemize} The term ``displayed category'', and the applications to type theory, are due to: \begin{itemize}% \item [[Benedikt Ahrens]], [[Peter LeFanu Lumsdaine]], \emph{Displayed Categories}, \href{https://arxiv.org/abs/1705.04296}{arxiv} \end{itemize} An unpacking of the definition as lax functors into [[Span]] is in 2.2 of \begin{itemize}% \item [[Duško Pavlović]], [[Samson Abramsky]], \emph{Specifying Interaction Categories}, \href{https://link.springer.com/chapter/10.1007/BFb0026986}{LNCS} \end{itemize} Also cited above: \begin{itemize}% \item [[Geoff Cruttwell]], [[Mike Shulman]], \emph{A unified framework for generalized multicategories} \href{http://tac.mta.ca/tac/volumes/24/21/24-21abs.html}{TAC} \end{itemize} [[!redirects displayed categories]] [[!redirects displayed functor]] [[!redirects displayed functors]] \end{document}