\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{distributive law} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{distributive_laws}{}\section*{{Distributive laws}}\label{distributive_laws} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{big_picture}{Big picture}\dotfill \pageref*{big_picture} \linebreak \noindent\hyperlink{explicit_definition}{Explicit definition}\dotfill \pageref*{explicit_definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{products_distributing_over_coproducts}{Products distributing over coproducts}\dotfill \pageref*{products_distributing_over_coproducts} \linebreak \noindent\hyperlink{in_cat}{In Cat}\dotfill \pageref*{in_cat} \linebreak \noindent\hyperlink{tensor_products_distributing_over_direct_sums}{Tensor products distributing over direct sums}\dotfill \pageref*{tensor_products_distributing_over_direct_sums} \linebreak \noindent\hyperlink{in_other_2categories}{In other 2-categories}\dotfill \pageref*{in_other_2categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Sometimes in [[mathematics]] we want to consider objects equipped with two different types of [[extra structure]] which interact in a suitable way. For instance, a [[ring]] is a [[set]] equipped with both (1) the structure of an (additive) [[abelian group]] and (2) the structure of a (multiplicative) [[monoid]], which satisfy the distributive laws $a\cdot (b+c) = a\cdot b + a\cdot c$ and $a\cdot 0 = 0$. Abstractly, there are two [[monads]] on the [[category]] [[Set]], one (call it $\mathbf{T}$) whose [[algebra over a monad|algebras]] are abelian groups, and one (call it $\mathbf{S}$) whose algebras are monoids, and so we might ask ``can we construct, from these two monads, a third monad whose algebras are rings?'' Such a monad would assign to each set $X$ the [[free object|free]] ring on that set, which consists of formal sums of formal products of elements of $X$---in other words, it can be identified with $T(S(X))$. Thus the question becomes ``given two monads $\mathbf{T}$ and $\mathbf{S}$, what further structure is required to make the composite $T S$ into a monad?'' It is easy to give $T S$ a unit, as the composite $Id \xrightarrow{\eta^S} S \xrightarrow{\eta^T S} T S$, but to give it a multiplication we need a transformation from $T S T S$ to $T S$. We naturally want to use the multiplications $\mu^T\colon T T \to T$ and $\mu^S\colon S S \to S$, but in order to do this we first need to switch the order of $T$ and $S$. However, if we have a transformation $\lambda\colon S T \to T S$, then we can define $\mu^{T S}$ to be the composite $T S T S \xrightarrow{\lambda} T T S S \xrightarrow{\mu^T\mu^S} T S$. Such a transformation, satisfying suitable axioms to make $T S$ into a monad, is called a \emph{distributive law}, because of the motivating example relating addition to multiplication in a ring. In that case, $S T X$ is a formal product of formal sums such as $(x_1 + x_2 + x_3)\cdot (x_4 + x_5)$, and the distributive law $\lambda$ is given by multiplying out such an expression formally, resulting in a formal sum of formal products such as $x_1\cdot x_4 + x_1 \cdot x_5 + x_2 \cdot x_4 + x_2 \cdot x_5 + x_3\cdot x_4 + x_3 \cdot x_5$. \hypertarget{big_picture}{}\subsection*{{Big picture}}\label{big_picture} [[monad|Monads]] in any [[2-category]] $C$ make themselves a 2-category $\mathrm{Mnd}$ in which 1-cells are either lax or colax morphisms of monads; by dualization the same is true for [[comonads]]. Monads internal to the 2-category of monads are called \emph{distributive laws}. In particular, distributive laws themselves make a 2-category. There are other variants like distributive laws between a monad and an [[endofunctor]], ``mixed'' distributive laws between a monad and a comonad (the variants for algebras and coalgebras called [[entwining structure]]s), distributive laws between actions of two different monoidal categories on the same category, for [[PROP]]s and so on. Having a distributive law $l$ from one monad to another enables to define the composite monad $\mathbf T\circ_l\mathbf P$. This correspondence extends to a 2-functor $\mathrm{comp}:\mathrm{Mnd}(\mathrm{Mnd}(C))\to\mathrm{Mnd}(C)$. An analogue of this 2-functor in the mixed setup is a homomorphism of bicategories from the bicategory of entwinings to a bicategory of [[coring]]s. \hypertarget{explicit_definition}{}\subsection*{{Explicit definition}}\label{explicit_definition} A \textbf{distributive law} from a monad $\mathbf{T} = (T, \mu^T, \eta^T)$ in $A$ to an endofunctor $P$ is a 2-cell $l : T P \Rightarrow P T$ such that $l \circ (\eta^T)_P = P(\eta^T)$ and $l \circ (\mu^T)_P = P(\mu^T) \circ l_T \circ T(l)$. In diagrams: $\backslash$begin\{tikzcd\} \& P $\backslash$ar\{dl\}swap\{$\backslash$eta{\tt \symbol{94}}T P\} $\backslash$ar\{dr\}\{P $\backslash$eta{\tt \symbol{94}}T\} $\backslash$ T P $\backslash$ar\{rr\}\{l\} \&\& P T $\backslash$end\{tikzcd\} $\backslash$begin\{tikzcd\} T T P $\backslash$ar\{d\}\{$\backslash$mu{\tt \symbol{94}}T P\} $\backslash$ar\{r\}\{T l\} \& T P T $\backslash$ar\{r\}\{l T\} \& P T T $\backslash$ar\{d\}\{P $\backslash$mu{\tt \symbol{94}}T\} $\backslash$ T P $\backslash$ar\{rr\}\{l\} \&\& P T $\backslash$end\{tikzcd\} Distributive laws from the monad $\mathbf{T}$ to the endofunctor $P$ are in a canonical bijection with lifts of $P$ to an endofunctor $P^{\mathbf T}$ in the [[Eilenberg-Moore category]] $A^{\mathbf T}$, satisfying $U^{\mathbf T} P^{\mathbf T} = P U^{\mathbf T}$. Indeed, the endofunctor $P^{\mathbf T}$ is given by $(M,\nu) \mapsto (P M,P(\nu)\circ l_M)$. A \textbf{distributive law} from a monad $\mathbf{T} = (T, \mu^T, \eta^T)$ to a monad $\mathbf{P} = (P, \mu^P, \eta^P)$ in $A$ (or \emph{of} $\mathbf T$ \emph{over} $\mathbf P$) is a distributive law from $\mathbf T$ to the endofunctor $P$, compatible with $\mu^P,\eta^P$ in the sense that $l \circ T(\eta^P) = (\eta^P)_T$ and $l \circ T(\mu^P) = (\mu^P)_T \circ P(l) \circ l_P$. In diagrams: $\backslash$begin\{tikzcd\} \& T $\backslash$ar\{dl\}swap\{T $\backslash$eta{\tt \symbol{94}}P\} $\backslash$ar\{dr\}\{$\backslash$eta{\tt \symbol{94}}P T\} $\backslash$ T P $\backslash$ar\{rr\}\{l\} \&\& P T $\backslash$end\{tikzcd\} $\backslash$begin\{tikzcd\} T P P $\backslash$ar\{d\}\{T $\backslash$mu{\tt \symbol{94}}P\} $\backslash$ar\{r\}\{l P\} \& P T P $\backslash$ar\{r\}\{P l\} \& P P T $\backslash$ar\{d\}\{$\backslash$mu{\tt \symbol{94}}P T\} $\backslash$ T P $\backslash$ar\{rr\}\{l\} \&\& P T $\backslash$end\{tikzcd\} Thus all together a distributive law from a monad to a monad is a 2-cell for which 2 triangles and 2 pentagons commute. In the entwining case, Brzeziski and Majid combined the 4 diagrams into one picture which they call the \emph{bow-tie diagram}. Similarly, there are definitions of distributive law of a comonad over a comonad, a monad over a comonad (sometimes called a \textbf{mixed} distributive law), and so on. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{products_distributing_over_coproducts}{}\subsubsection*{{Products distributing over coproducts}}\label{products_distributing_over_coproducts} In a \emph{[[distributive category]]} [[products]] distribute over [[coproducts]]. \hypertarget{in_cat}{}\subsubsection*{{In Cat}}\label{in_cat} \begin{itemize}% \item There is a distributive law of the monad (on [[Set]]) for [[monoids]] over the monad for [[abelian groups]], whose composite is the monad for [[rings]]. This is the canonical example which gives the name to the whole concept. \end{itemize} \hypertarget{tensor_products_distributing_over_direct_sums}{}\paragraph*{{Tensor products distributing over direct sums}}\label{tensor_products_distributing_over_direct_sums} For many standard choices of [[tensor products]] in the presence of [[direct sums]] the former distribute over the latter. See at \emph{[[tensor product of abelian groups]]} and \emph{[[tensor product of modules]]}. \hypertarget{in_other_2categories}{}\subsubsection*{{In other 2-categories}}\label{in_other_2categories} \begin{itemize}% \item [[strict factorization systems]] can be identified with distributive laws between categories regarded as monads in [[span|Span(Set)]]. \item More generally, [[factorization systems over a subcategory]] can be identified with distributive laws in [[Prof]]. Ordinary [[orthogonal factorization systems]] are a special case. The latter can also be obtained by other weakenings; see for instance \href{http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html}{this discussion}. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[distributivity for monoidal structures]] \item [[monad transformer]] \end{itemize} \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} \begin{itemize}% \item H. Appelgate, [[Michael Barr]], J. Beck, [[Bill Lawvere]], [[Fred Linton]], E, Manes, [[Myles Tierney]], F. Ulmer, \emph{Seminar on triples and categorical homology theory}, ETH 1966/67, edited by B. Eckmann, LNM 80, Springer 1969. (includes article Jon Beck, Distributive laws, pages 119--140). Republished in \emph{Reprints in Theory and Applications of Categories}, No. 18 (2008) pp. 1-303. (\href{http://www.tac.mta.ca/tac/reprints/articles/18/tr18abs.html}{web}) \item [[Michael Barr]], [[Charles Wells]], \emph{Toposes, triples and theories}, Springer-Verlag 1985; \href{http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html}{web remake at TAC} \item [[Gabi Böhm]], \emph{Internal bialgebroids, entwining structures and corings}, AMS Contemp. Math. 376 (2005) 207--226; \href{http://front.math.ucdavis.edu/math.QA/0311244}{arXiv:math.QA/0311244} \item [[T. Brzeziński]], [[S. Majid]], \emph{Coalgebra bundles}, Comm. Math. Phys. 191 (1998), no. 2, 467--492 (\href{http://arxiv.org/abs/q-alg/9602022}{arXiv version}). \item T. Brzeziski, R. Wisbauer, \emph{Corings and comodules}, London Math. Soc. Lec. Note Series 309, Cambridge 2003. \item T. F. Fox, [[Martin Markl]], \emph{Distributive laws, bialgebras, and cohomology}, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 167--205, Contemp. Math. 202, AMS 1997. \item [[Steve Lack]], \emph{Composing PROPS}, \href{http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html}{Theory Appl. Categ.} 13 (2004), No. 9, 147--163. \item [[Steve Lack]], [[Ross Street]], \emph{The formal theory of monads II}, Special volume celebrating the 70th birthday of Professor Max Kelly. J. Pure Appl. Algebra 175 (2002), no. 1-3, 243--265. \item [[Martin Markl]], \emph{Distributive laws and Koszulness}, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 2, 307--323 (\href{http://www.numdam.org/numdam-bin/fitem?id=AIF_1996__46_2_307_0}{numdam}) \item [[Ross Street|R. Street]], \emph{The formal theory of monads}, J. Pure Appl. Alg. 2, 149--168 (1972) \item [[Z. Škoda]], \emph{Distributive laws for monoidal categories} (\href{http://front.math.ucdavis.edu/math.CT/0406310}{arXiv:0406310}); \emph{Equivariant monads and equivariant lifts versus a 2-category of distributive laws} (\href{http://front.math.ucdavis.edu/0707.1609}{arXiv:0707.1609}); \emph{Bicategory of entwinings} (\href{http://arxiv.org/abs/0805.4611}{arXiv:0805.4611}) \item [[Z. Škoda]], \emph{Some equivariant constructions in noncommutative geometry}, Georgian Math. J. 16 (2009) 1; 183--202 (\href{http://front.math.ucdavis.edu/0811.4770}{arXiv:0811.4770}) \item R. Wisbauer, \emph{Algebras versus coalgebras}, Appl. Categ. Structures \textbf{16} (2008), no. 1-2, 255--295. \item [[Francisco Marmolejo]] and [[Adrian Vazquez-Marquez]], \emph{No-iteration mixed distributive laws}, \href{https://doi.org/10.1017/S0960129514000656}{doi} \item Enrique Ruiz Hernández, \emph{Another characterization of no-iteration distributive laws}, \href{https://arxiv.org/abs/1910.06531}{arxiv} \end{itemize} [[!redirects distributive laws]] [[!redirects distributivity law]] [[!redirects distributivity]] \end{document}