\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{distributivity pullback} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{distributivity_pullback}{}\section*{{Distributivity pullback}}\label{distributivity_pullback} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{connection_to_exponentiation}{Connection to exponentiation}\dotfill \pageref*{connection_to_exponentiation} \linebreak \noindent\hyperlink{connection_to_distributivity}{Connection to distributivity}\dotfill \pageref*{connection_to_distributivity} \linebreak \noindent\hyperlink{connection_to_pullback_complements}{Connection to pullback complements}\dotfill \pageref*{connection_to_pullback_complements} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{distributivity pullback} is the data which encodes a particular [[exponentiable morphism|exponentiation]] along a [[morphism]] in a [[category]]. In other words, it is a [[cofree object]] with respect to a [[pullback]] functor. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{udefn} For morphisms $g:Z\to A$ and $f:A\to B$ in a category, a \textbf{pullback around $(f,g)$} is a diagram \begin{displaymath} \itexarray{ X & \xrightarrow{p} & Z & \xrightarrow{g} & A\\ ^q\downarrow &&&& \downarrow^f\\ Y && \xrightarrow{r} && B} \end{displaymath} in which the outer rectangle is a [[pullback]]. \end{udefn} A morphism of pullbacks around $(f,g)$ consists of $s:X\to X'$ and $t:Y\to Y'$ such that $p's=p$, $q s=t q'$, and $r = r's$. \begin{udefn} For $g:Z\to A$ and $f:A\to B$ as above, a \textbf{distributivity pullback} around $(f,g)$ is a terminal object of the category of pullbacks around $(f,g)$. \end{udefn} If the above diagram is a distributivity pullback, we say that it exhibits $r$ as a \emph{distributivity pullback of $g$ along $f$}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{connection_to_exponentiation}{}\subsubsection*{{Connection to exponentiation}}\label{connection_to_exponentiation} \begin{utheorem} A morphism $f:A\to B$ is [[exponentiable morphism|exponentiable]] if and only if all distributivity pullbacks along $f$ exist. \end{utheorem} \begin{proof} The universal property of a distributivity pullback says exactly that $Y\xrightarrow{r} B$ is the exponential of $g$ along $f$. \end{proof} \hypertarget{connection_to_distributivity}{}\subsubsection*{{Connection to distributivity}}\label{connection_to_distributivity} In a category with pullbacks, for any pullback around $(f,g)$ with $f$ and $q$ exponentiable, we have a canonical Beck-Chevalley isomorphism \begin{displaymath} r^* f_* \xrightarrow{\cong} q_* p^* g^* . \end{displaymath} The [[mate]] of the inverse of this is a transformation \begin{displaymath} \delta_{p,q,r}:r_! q_* p^* \to f_* g_! \end{displaymath} \begin{utheorem} A pullback around $(f,g)$ with $f$ and $q$ exponentiable is a distributivity pullback if and only if $\delta_{p,q,r}$ is an isomorphism. \end{utheorem} \begin{proof} See \hyperlink{Weber}{(Weber)}. \end{proof} Invertibility of $\delta$ expresses that [[dependent products]] (the functors $f_*$ and $q_*$) distribute over [[dependent sums]] (the functors $g_!$ and $r_!$). For instance, in the category of sets, if $(C_z)_{z\in Z}$ is a $Z$-indexed family of sets, then \begin{displaymath} (f_* g_! C)_b = \prod_{f(a)=b} \sum_{g(z)=a} C_z \end{displaymath} while \begin{displaymath} (r_! q_* p^* C)_b = \sum_{r(y)=b} \prod_{q(x)=y} C_{p(x)} \end{displaymath} As a very simple example, if $B=1$, $A=\{0,1\}$, and $Z=\{00,01,02,10,11\}$ with $g(i j) = i$, then $Y$ is the set of sections of $g$, $X$ the set of pairs of a section and an element of $A$, and $p$ the evaluation. Then if $C = (C_{00}, C_{01}, C_{02}, C_{10}, C_{11})$, we have \begin{displaymath} f_* g_! C = (C_{00} + C_{01} + C_{02}) \times (C_{10} + C_{11}) \end{displaymath} and \begin{displaymath} r_! q_* p^* C = (C_{00}\times C_{10}) + (C_{00}\times C_{11}) + (C_{01}\times C_{10}) + (C_{01}\times C_{11}) + (C_{02}\times C_{10}) + (C_{02}\times C_{11}). \end{displaymath} In the [[internal logic|internal]] [[dependent type theory]] of the ambient category, if we express $f$ and $g$ as [[dependent types]] \begin{displaymath} b:B \vdash A(b) : Type \qquad and \qquad b:B, a:A(b) \vdash Z(b,a) : Type \end{displaymath} then the exponential $r$ of $g$ along $f$ in a distributivity pullback is the [[dependent product type]] \begin{displaymath} b:B \vdash \prod_{a:A(b)} Z(b,a) : Type. \end{displaymath} and the distributivity isomorphism $\delta$ says that for any further dependent type \begin{displaymath} b:B, a:A(b), z:Z(b,a) \vdash W(b,a,z) : Type \end{displaymath} in the context of $b:B$ we have an isomorphism \begin{displaymath} \sum_{\phi:\prod_{a:A(b)} Z(b,a) } \prod_{a:A(b)} W(b,a,\phi(a)) \qquad \cong \qquad \prod_{a:A(b)} \sum_{z:Z(b,a)} W(b,a,z). \end{displaymath} This isomorphism (or more specifically the left-to-right map) has traditionally been called the ``axiom of choice'' in [[Martin-Lof type theory]], since if $\sum$ and $\prod$ are interpreted according to [[propositions as types]] then it looks like the set-theoretic axiom of choice. However, this is not really appropriate, since this is a provable statement rather than an additional axiom, and does not have any of the usual strong consequences of the set-theoretic axiom of choice. See [[axiom of choice]] for further discussion. \hypertarget{connection_to_pullback_complements}{}\subsubsection*{{Connection to pullback complements}}\label{connection_to_pullback_complements} If $p$ is an isomorphism, then a distributivity pullback is also a [[final pullback complement]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Mark Weber]], ``Polynomials in categories with pullbacks'', \href{http://arxiv.org/abs/1106.1983}{arXiv}, \href{http://tac.mta.ca/tac/volumes/30/16/30-16abs.html}{TAC} \end{itemize} [[!redirects distributivity pullbacks]] \end{document}