\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{division algebra and supersymmetry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{lie_theory}{}\paragraph*{{Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There is a close relationship between \begin{itemize}% \item the four real [[normed division algebras]] \item [[spin geometry]] and real (Majorana) [[spin representations]]; \item the [[Lie algebra cohomology]] of the [[super Poincare Lie algebra]], \item and [[supersymmetry]] in [[quantum field theory]] and [[string theory]]. \end{itemize} This is based on the fact that in certain dimensions, [[spin group]] [[representation]]s are naturally identified with a $\mathbb{K}^n$, for $\mathbb{K}$ one of the [[normed division algebras]], see at [[spin group]] \emph{\href{spin%20group#ExceptionalIsomorphisms}{The exceptional isomorphisms}}. For detailed exposition see \begin{itemize}% \item \emph{[[geometry of physics -- supersymmetry]]} the section \emph{\href{geometry+of+physics+--+supersymmetry##RealSpinRepresentationViaNormedDivisionAlgebra}{Real spin representations via Real alternative division algebra}} \item \emph{[[geometry of physics -- fundamental super p-branes]]} \end{itemize} [[!include exceptional spinors and division algebras -- table]] The structure of the [[normed division algebras]] also governs the existence of the \emph{[[brane scan]]} and the super-[[∞-Lie algebras]] such as the [[supergravity Lie 3-algebra]]. By the [[D'Auria-Fre formulation of supergravity]] the [[∞-Lie algebra valued forms]] with values in these constitute the field content of (11-dimensional) [[supergravity]]. Combining this, one finds that [[supergravity]] coupled to [[super Yang-Mills theory]] (super [[Einstein-Yang-Mills theories]]) are parameterized by triples of real normed division algebras, forming a ``[[magic pyramid]]''. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf invariant one]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The relation between [[supersymmetry and division algebras]] was gradually established by a variety of authors, including \begin{itemize}% \item [[Taichiro Kugo]], [[Paul Townsend]], \emph{Supersymmetry and the division algebras}, Nuclear Physics B, Volume 221, Issue 2 (1982) p. 357-380. (\href{http://inspirehep.net/record/181889}{spires}, \href{http://cds.cern.ch/record/140183/files/198301032.pdf}{pdf}) \item A. Sudbery, \emph{Division algebras, (pseudo)orthogonal groups and spinors}, Jour. Phys. A17 (1984), 939--955. \item [[Jonathan Evans]], Supersymmetric Yang--Mills theories and division algebras, Nucl. Phys. B298 (1988), 92--108. Also available as hhttp://www-lib.kek.jp/cgi-bin/img index?198801412i \item K.-W. Chung, A. Sudbery, \emph{Octonions and the Lorentz and conformal groups of ten-dimensional space-time}, Phys. Lett. B 198 (1987), 161--164. \item [[Corinne Manogue]], A. Sudbery, \emph{General solutions of covariant superstring equations of motion}, Phys. Rev. D 12 (1989), 4073--4077 \item J\"o{}rg Schray, \emph{The general classical solution of the superparticle}, Class. Quant. Grav. 13 (1996), 27--38. (\href{https://arxiv.org/abs/hep-th/9407045}{arXiv:hep-th/9407045}) \item [[Tevian Dray]], J. Janesky, [[Corinne Manogue]], Octonionic hermitian matrices with non-real eigenvalues, Adv. Appl. Clifford Algebras 10 (2000), 193--216 (\href{https://arxiv.org/abs/math/0006069}{arXiv:math/0006069}) \end{itemize} Streamlined proof and exposition regarding is in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry I}, in R. Doran, G. Friedman and [[Jonathan Rosenberg]] (eds.), \emph{Superstrings, Geometry, Topology, and $C*$-algebras}, Proc. Symp. Pure Math. 81, AMS, Providence, 2010, pp. 65-80 (\href{http://arxiv.org/abs/0909.0551}{arXiv:0909.0551}) \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry II}, Adv. Math. Theor. Phys. 15 (2011), 1373-1410 (\href{http://arxiv.org/abs/1003.3436}{arXiv:1003.34360}) \end{itemize} Discussion with an emphasis on [[super Yang-Mills theory]] and [[U-duality]] in [[supergravity]] and the [[Freudenthal magic square]] is in \begin{itemize}% \item [[Leron Borsten]], [[Michael Duff]], L. J. Hughes, S. Nagy, \emph{A magic square from Yang-Mills squared} (\href{http://arxiv.org/abs/1301.4176}{arXiv:1301.4176}) \item A. Anastasiou, [[Leron Borsten]], [[Mike Duff]], L. J. Hughes, S. Nagy, \emph{Super Yang-Mills, division algebras and triality} (\href{http://arxiv.org/abs/1309.0546}{arXiv:1309.0546}) \item A. Anastasiou, [[Leron Borsten]], [[Michael Duff]], L. J. Hughes, S. Nagy, \emph{A magic pyramid of supergravities}, \href{http://arxiv.org/abs/1312.6523}{arXiv:1312.6523} \end{itemize} The relationship in [[string theory]] via [[octonion]] algebra between the NRS [[spinning string]] and the [[Green-Schwarz superstring]] [[sigma-models]] is discussed in \begin{itemize}% \item Rafael I. Nepomechie, \emph{Nonabelian bosonization, triality, and superstring theory} Physics Letters B Volume 178, Issues 2-3, 2 October 1986, Pages 207-210 \item [[Itzhak Bars]], D. Nemschansky and S. Yankielowicz, SLACPub-3758. \item H. Tachibana, K. Imeda, \emph{Octonions, superstrings and ten-dimensional spinors} , Il nuovo cimento, Vol 104 B N.1 \end{itemize} The relation of the division algebras to ordinary (Lie algebraic) extensions of the [[super Poincare Lie algebra]] is discussed in \begin{itemize}% \item Jerzy Lukierski, Francesco Toppan, \emph{Generalized Space-time Supersymmetries, Division Algebras and Octonionic M-theory} (\href{https://arxiv.org/abs/hep-th/0203149}{arXiv:hep-th/0203149}, \href{http://cbpfindex.cbpf.br/publication_pdfs/NF00102.2010_08_03_10_47_48.pdf}{pdf}) \item A. Anastasiou, L. Borsten, [[Mike Duff]], L. J. Hughes, S. Nagy, \emph{An octonionic formulation of the M-theory algebra} (\href{http://arxiv.org/abs/1402.4649}{arXiv:1402.4649}) \end{itemize} Normed division algebras are used to describe the construction of [[Lie 2-algebra]] extensions of the [[super Poincare Lie algebra]] in \begin{itemize}% \item [[John Baez]], [[John Huerta]], \emph{Division algebras and supersymmetry II}, Adv. Math. Theor. Phys. 15 (2011), 1373-1410 (\href{http://arxiv.org/abs/1003.3436}{arXiv:1003.34360}) \item [[John Huerta]], \emph{Division Algebras, Supersymmetry and Higher Gauge Theory}, (\href{http://arxiv.org/abs/1106.3385}{arXiv:1106.3385}) \item [[John Huerta]], \emph{Division Algebras and supersymmetry III}, (\href{http://arxiv.org/abs/1109.3574}{arXiv:1109.3574}) \end{itemize} This is made use of in the [[homotopy theory|homotopy theoretic]] description of [[M-theory]]-structure in \begin{itemize}% \item [[John Huerta]], [[Urs Schreiber]], \emph{[[schreiber:M-Theory from the Superpoint]]}, Letters of Mathematical Physics, 2018 (\href{https://arxiv.org/abs/1702.01774}{arXiv:1702.01774}) \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]} (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}) \end{itemize} [[!redirects division algebras and supersymmetry]] [[!redirects supersymmetry and division algebra]] [[!redirects supersymmetry and division algebras]] [[!redirects real spin representations and division algebras]] [[!redirects division algebras and real spin representations]] \end{document}