\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{double dimensional reduction} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{via_fiber_integration_in_ordinary_differential_cohomology}{Via fiber integration in ordinary differential cohomology}\dotfill \pageref*{via_fiber_integration_in_ordinary_differential_cohomology} \linebreak \noindent\hyperlink{ViaCyclicLoopSpaces}{Via cyclic loop spaces}\dotfill \pageref*{ViaCyclicLoopSpaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ReductionOnTheCircle}{Reduction on the circle}\dotfill \pageref*{ReductionOnTheCircle} \linebreak \noindent\hyperlink{for_general_super_branes}{For general super $p$-branes}\dotfill \pageref*{for_general_super_branes} \linebreak \noindent\hyperlink{from_mbranes_to_fbranes}{From M-branes to F-branes}\dotfill \pageref*{from_mbranes_to_fbranes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{reduction_of_membrane_to_string}{Reduction of membrane to string}\dotfill \pageref*{reduction_of_membrane_to_string} \linebreak \noindent\hyperlink{reduction_of_m5brane_to_d4brane}{Reduction of M5-brane to D4-brane}\dotfill \pageref*{reduction_of_m5brane_to_d4brane} \linebreak \noindent\hyperlink{reduction_of_mwaves_and_mk6s}{Reduction of M-Waves and MK6s}\dotfill \pageref*{reduction_of_mwaves_and_mk6s} \linebreak \noindent\hyperlink{reduction_of_black_m2s_and_black_m5s}{Reduction of black M2s and black M5s}\dotfill \pageref*{reduction_of_black_m2s_and_black_m5s} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{double dimensional reduction} is a variant of [[Kaluza-Klein mechanism]] combined with [[fiber integration]] in the presence of [[branes]]: given a [[spacetime]] of [[dimension]] $d+1$ in which a $p+1$-[[brane]] propagates, its KK-reduction results in a $d$-dimensional effective spacetime containing a $p+1$-brane together with a ``doubly reduced'' $p$-brane, which is the reduction of those original $(p+1)$-brane configurations that [[wrapped brane|wrapped]] the cycle along which the KK-reduction takes place. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{via_fiber_integration_in_ordinary_differential_cohomology}{}\subsubsection*{{Via fiber integration in ordinary differential cohomology}}\label{via_fiber_integration_in_ordinary_differential_cohomology} Let $\mathbf{H}$ be the [[smooth infinity-groupoid|smooth topos]]. For $p+1 \in \mathbb{N}$ write $\mathbf{B}^{p+1}U(1)_{conn} \in \mathbf{H}$ for the universal [[moduli stack]] of [[circle n-bundles with connection]] (given by the [[Deligne complex]]). Notice that [[fiber integration in ordinary differential cohomology]] has the following stacky incarnation (see \href{fiber+integration+in+ordinary+differential+cohomology#ViaSmoothHomotopyType}{here}): \begin{prop} \label{}\hypertarget{}{} For $\Sigma$ an [[orientation|oriented]] [[closed manifold]] of [[dimension]] $k \leq p+1$, then [[fiber integration]] in [[ordinary differential cohomology]] is reflected by a morphism of the form \begin{displaymath} \itexarray{ [\Sigma, \mathbf{B}^{p+1}U(1)_{conn}] &\stackrel{\int_\Sigma}{\longrightarrow}& \mathbf{B}^{p+1-k}U(1)_{conn} \\ \downarrow^{[\Sigma,curv]} && \downarrow^{curv} \\ [\Sigma,\mathbf{\Omega}^{p+2}] &\stackrel{\int_\Sigma}{\longrightarrow}& \mathbf{\Omega}^{p+2-k} } \,, \end{displaymath} where the vertical morphisms are the [[curvature]] maps and the bottom morphims reflects ordinary [[fiber integration]] of [[differential forms]]. \end{prop} \begin{defn} \label{DoubleDimensionalReductionForDifferentialCocycles}\hypertarget{DoubleDimensionalReductionForDifferentialCocycles}{} Given a [[cocycle]] \begin{displaymath} \nabla \;\colon\; X \times \Sigma \longrightarrow \mathbf{B}^{p+1}U(1)_{conn} \,, \end{displaymath} on the [[Cartesian product]] of some [[smooth space]] $X$ with $\Sigma$, then its \emph{double dimensional reduction} is the cocycle on $X$ which is given by the composite \begin{displaymath} X \longrightarrow [\Sigma, X \times \Sigma] \stackrel{[\Sigma,\nabla]}{\longrightarrow} [\Sigma,\mathbf{B}^{p+1}U(1)_{conn}] \stackrel{\int_\Sigma}{\longrightarrow} \mathbf{B}^{p+1-k}U(1)_{conn} \,, \end{displaymath} where the first morphism is the [[unit of an adjunction|unit]] of the ([[Cartesian product]] $\dashv$ [[internal hom]])-[[adjunction]]. \end{defn} \hypertarget{ViaCyclicLoopSpaces}{}\subsubsection*{{Via cyclic loop spaces}}\label{ViaCyclicLoopSpaces} We discuss here a formalization of double dimensional reduction via cyclification adjunction (\hyperlink{FSS16}{FSS 16, section 3}, \hyperlink{BMSS18}{BMSS 18, section 2.2}). For more see at \emph{[[geometry of physics -- fundamental super p-branes]]} the \emph{\href{geometry+of+physics+--+fundamental+super+p-branes#DoubleDimensionalReduction}{section on double dimensional reduction}}. \begin{prop} \label{GeneralReduction}\hypertarget{GeneralReduction}{} Let $\mathbf{H}$ be any [[(∞,1)-topos]] and let $G$ be an [[∞-group]] in $\mathbf{H}$. Then the right [[base change]]/[[dependent product]] along the canonical point inclusion $\ast \to \mathbf{B}G$ into the [[delooping]] of $G$ takes the following form: There is a pair of [[adjoint ∞-functors]] of the form \begin{displaymath} \mathbf{H} \underoverset {\underset{[G,-]/G}{\longrightarrow}} {\overset{hofib}{\longleftarrow}} {\bot} \mathbf{H}_{/\mathbf{B}G} \,, \end{displaymath} where \begin{itemize}% \item $[G,-]$ denotes the [[internal hom]] in $\mathbf{H}$, \item $[G,-]/G$ denotes the [[homotopy quotient]] by the [[conjugation action|conjugation]] [[∞-action]] for $G$ equipped with its canonical [[∞-action]] by left multiplication and the argument regarded as equipped with its trivial $G$-$\infty$-action (for $G = S^1$ the [[circle group]] this is the [[cyclic loop space]] construction). \end{itemize} Hence for \begin{itemize}% \item $\hat X \to X$ a $G$ [[principal ∞-bundle]] \item $A$ a [[coefficient]] object, such as for some [[differential cohomology|differential]] [[generalized cohomology theory]] \end{itemize} then there is a [[natural equivalence]] \begin{displaymath} \underset{ \text{original} \atop \text{fluxes} }{ \underbrace{ \mathbf{H}(\hat X\;,\; A) } } \;\; \underoverset {\underset{oxidation}{\longleftarrow}} {\overset{reduction}{\longrightarrow}} {\simeq} \;\; \underset{ \text{doubly} \atop { \text{dimensionally reduced} \atop \text{fluxes} } }{ \underbrace{ \mathbf{H}_{/\mathbf{B}G}(X \;,\; [G,A]/G) } } \end{displaymath} given by \begin{displaymath} \left( \hat X \longrightarrow A \right) \;\;\; \leftrightarrow \;\;\; \left( \itexarray{ X && \longrightarrow && [G,A]/G \\ & \searrow && \swarrow \\ && \mathbf{B}G } \right) \end{displaymath} \end{prop} \begin{proof} First observe that the [[conjugation action]] on $[G,X]$ is the [[internal hom]] in the [[(∞,1)-category]] of $G$-[[∞-actions]] $Act_G(\mathbf{H})$. Under the [[equivalence of (∞,1)-categories]] \begin{displaymath} Act_G(\mathbf{H}) \simeq \mathbf{H}_{/\mathbf{B}G} \end{displaymath} (from \href{geometry+of+physics+-+fundamental+super+p-branes#NSS12}{NSS 12}) then $G$ with its canonical [[∞-action]] is $(\ast \to \mathbf{B}G)$ and $X$ with the trivial action is $(X \times \mathbf{B}G \to \mathbf{B}G)$. Hence \begin{displaymath} [G,X]/G \simeq [\ast, X \times \mathbf{B}G]_{\mathbf{B}G} \;\;\;\;\; \in \mathbf{H}_{/\mathbf{B}G} \,. \end{displaymath} Actually, this is the very definition of what $[G,X]/G \in \mathbf{H}_{/\mathbf{B}G}$ is to mean in the first place, abstractly. But now since the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}G}$ is itself [[cartesian closed (infinity,1)-category|cartesian closed]], via \begin{displaymath} E \times_{\mathbf{B}G}(-) \;\;\; \dashv \;\;\; [E,-]_{\mathbf{B}G} \end{displaymath} it is immediate that there is the following sequence of [[natural equivalences]] \begin{displaymath} \begin{aligned} \mathbf{H}_{/\mathbf{B}G}(Y, [G,X]/G) & \simeq \mathbf{H}_{/\mathbf{B}G}(Y, [\ast, X \times \mathbf{B}G]_{\mathbf{B}G}) \\ & \simeq \mathbf{H}_{/\mathbf{B}G}( Y \times_{\mathbf{B}G} \ast, \underset{p^\ast X}{\underbrace{X \times \mathbf{B}G }} ) \\ & \simeq \mathbf{H}( \underset{hofib(Y)}{\underbrace{p_!(Y \times_{\mathbf{B}G} \ast)}}, X ) \\ & \simeq \mathbf{H}(hofib(Y),X) \end{aligned} \end{displaymath} Here $p \colon \mathbf{B}G \to \ast$ denotes the terminal morphism and $p_! \dashv p^\ast$ denotes the [[base change]] along it. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ReductionOnTheCircle}{}\subsubsection*{{Reduction on the circle}}\label{ReductionOnTheCircle} \begin{example} \label{ReductionOnTheCircle}\hypertarget{ReductionOnTheCircle}{} When $\Sigma = S^1$ is the [[circle]], and we think of $X \times S^1$ as a [[spacetime]] of [[11-dimensional supergravity]], then $\nabla \colon X \times S^1 \to \mathbf{B}^3 U(1)_{conn}$ may represent the [[supergravity C-field]] as a cocycle in ordinary differential cohomology. Then its double dimensional reduction in the sense of def. \ref{DoubleDimensionalReductionForDifferentialCocycles} is the differential cocycle representing the [[B-field]] on $X$, in the sense of [[string theory]]. \end{example} \begin{remark} \label{Cyclotomic}\hypertarget{Cyclotomic}{} For $\Sigma = S^1$ a circle as in example \ref{ReductionOnTheCircle}, then the morphism $X \longrightarrow [\Sigma, X \times \Sigma]$ in def. \ref{DoubleDimensionalReductionForDifferentialCocycles} sends each point of $X$ to the loop in $X\times S^1$ that winds identically around the copy of $S^1$ at that point. Hence in this case it would make sense to consider, more generally, for each $p \in \mathbb{Z}$ the ``order $p$'' double dimensional reduction, given by the operation where one instead considers the map that lets the loop wind $p$ times around the $S^1$. The resulting double dimensional reduction is just $p$-times the original one, so in a sense nothing much is changed, but maybe it is suggestive that now we are looking at the space of $C_p$-[[fixed points]] of the [[free loop space]] (for $C_p$ the [[cyclic group]] of order $p$). In [[E-infinity geometry]] this fixed-point structure on the [[free loop spaces]] makes the derived function algebras -- the [[topological Hochschild homology]] of the original function algebras -- be [[cyclotomic spectra]]. \end{remark} \hypertarget{for_general_super_branes}{}\subsubsection*{{For general super $p$-branes}}\label{for_general_super_branes} Double dimensional reduction for the super-$p$-[[branes]] in $D$ dimensions which are described by the [[Green-Schwarz action functional]] corresponds to moving down and left the diagonals in the brane scan table of consistent such branes: [[branescan.gif:pic]] In particular \begin{itemize}% \item the [[superstring]] of [[type IIA string theory]] appears as the double dimensional reduction of the [[M2-brane]] in the [[KK-compactification]] from [[11-dimensional supergravity]]/[[M-theory]] down to 10-dimensional [[type II supergravity]]/[[type II string theory]]. \item the [[D4-brane]] appears as the double dimensional reduction of the [[M5-brane]] under this process; \item the double dimensional reduction of the [[super 2-brane in 4d]] is [[super 1-brane in 3d]] (see there). \end{itemize} \hypertarget{from_mbranes_to_fbranes}{}\subsubsection*{{From M-branes to F-branes}}\label{from_mbranes_to_fbranes} \begin{itemize}% \item [[duality between M-theory and type IIA string theory]] \end{itemize} [[!include F-branes -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[caloron correspondence]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Formalization of double dimensional reduction is discussed in [[rational homotopy theory]] in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], Section 3 of \emph{[[schreiber:T-Duality from super Lie n-algebra cocycles for super p-branes]]}, ATMP Volume 22 (2018) Number 5 (\href{https://arxiv.org/abs/1611.06536}{arXiv:1611.06536}) \end{itemize} and in full [[homotopy theory]] in \begin{itemize}% \item [[Vincent Braunack-Mayer]], [[Hisham Sati]], [[Urs Schreiber]], Section 2.2 of \emph{[[schreiber:Gauge enhancement of Super M-Branes|Gauge enhancement of Super M-Branes via rational parameterized stable homotopy theory]]} (\href{https://arxiv.org/abs/1806.01115}{arXiv:1806.01115}) \end{itemize} Exposition is in \begin{itemize}% \item [[Urs Schreiber]], \href{https://ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes#DoubleDimensionalReduction}{Section 4} of \emph{[[schreiber:Super Lie n-algebra of Super p-branes]]}, talks at \href{http://www.surrey.ac.uk/maths/news/seminars/fsg/}{Fields, Strings, and Geometry Seminar}, Surrey, 5th-9th Dec. 2016 \end{itemize} \hypertarget{reduction_of_membrane_to_string}{}\subsubsection*{{Reduction of membrane to string}}\label{reduction_of_membrane_to_string} The concept of double dimensional reduction was introduced, for the case of the reduction of the [[supermembrane]] in 11d to the [[Green-Schwarz superstring]] in 10d, in \begin{itemize}% \item [[Michael Duff]], [[Paul Howe]], T. Inami, [[Kellogg Stelle]], \emph{Superstrings in $D=10$ from Supermembranes in $D=11$}, Phys. Lett. B191 (1987) 70 and in [[Michael Duff]] (ed.) \emph{[[The World in Eleven Dimensions]]} 205-206 (1987) (\href{http://inspirehep.net/record/245249}{spire:245249}) \end{itemize} The above ``brane scan'' table showing the double dimensional reduciton pattern of the super-$p$-branes given by the [[Green-Schwarz action functional]] (see there for more references on this) is taken from \begin{itemize}% \item [[Michael Duff]], \emph{Supermembranes: the first fifteen weeks} CERN-TH.4797/87 (1987) (\href{http://ccdb4fs.kek.jp/cgi-bin/img/allpdf?198708425}{scan}) \end{itemize} \hypertarget{reduction_of_m5brane_to_d4brane}{}\subsubsection*{{Reduction of M5-brane to D4-brane}}\label{reduction_of_m5brane_to_d4brane} The [[double dimensional reduction]] of the [[M5-brane]] to the [[D4-brane]]: \begin{itemize}% \item [[Paul Townsend]], \emph{D-branes from M-branes}, Phys. Lett. B373 (1996) 68-75 (\href{https://arxiv.org/abs/hep-th/9512062}{arXiv:hep-th/9512062}) \item [[Mina Aganagic]], Jaemo Park, Costin Popescu, [[John Schwarz]], Section 6 of \emph{World-Volume Action of the M Theory Five-Brane}, Nucl.Phys. B496 (1997) 191-214 (\href{http://arxiv.org/abs/hep-th/9701166}{arXiv:hep-th/9701166}) \item [[Mina Aganagic]], Jaemo Park, Costin Popescu, [[John Schwarz]], Section 6 of \emph{Dual D-Brane Actions}, Nucl. Phys. B496 (1997) 215-230 (\href{https://arxiv.org/abs/hep-th/9702133}{arXiv:hep-th/9702133}) \item [[Neil Lambert]], Constantinos Papageorgakis, Maximilian Schmidt-Sommerfeld, \emph{M5-Branes, D4-Branes and Quantum 5D super-Yang-Mills}, JHEP 1101:083 (2011) (\href{http://arxiv.org/abs/1012.2882}{arXiv:1012.2882}) \item [[Edward Witten]], \emph{Fivebranes and Knots} (\href{http://arxiv.org/abs/1101.3216}{arXiv:1101.3216}) \end{itemize} \hypertarget{reduction_of_mwaves_and_mk6s}{}\subsubsection*{{Reduction of M-Waves and MK6s}}\label{reduction_of_mwaves_and_mk6s} \begin{itemize}% \item [[José Figueroa-O'Farrill]], [[Joan Simón]], \emph{Supersymmetric Kaluza-Klein reductions of M-waves and MKK-monopoles}, Class. Quant. Grav.19:6147-6174, 2002 (\href{https://arxiv.org/abs/hep-th/0208108}{arXiv:hep-th/0208108}) \end{itemize} \hypertarget{reduction_of_black_m2s_and_black_m5s}{}\subsubsection*{{Reduction of black M2s and black M5s}}\label{reduction_of_black_m2s_and_black_m5s} \begin{itemize}% \item [[José Figueroa-O'Farrill]], [[Joan Simón]], \emph{Supersymmetric Kaluza-Klein reductions of M2 and M5-branes}, Adv. Theor. Math. Phys. 6:703-793, 2003 (\href{https://arxiv.org/abs/hep-th/0208107}{arXiv:hep-th/0208107}) \end{itemize} [[!redirects double dimensional reductions]] [[!redirects double dimensional reduction]] \end{document}