\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{double field theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{tdualitycovariant_formalism}{T-duality-covariant formalism}\dotfill \pageref*{tdualitycovariant_formalism} \linebreak \noindent\hyperlink{parahermitian_geometry}{Para-hermitian geometry}\dotfill \pageref*{parahermitian_geometry} \linebreak \noindent\hyperlink{foliated_courant_algebroid_and_spacetime}{Foliated Courant algebroid and spacetime}\dotfill \pageref*{foliated_courant_algebroid_and_spacetime} \linebreak \noindent\hyperlink{cbracket}{C-bracket}\dotfill \pageref*{cbracket} \linebreak \noindent\hyperlink{analogy_with_geometric_quantization}{Analogy with geometric quantization}\dotfill \pageref*{analogy_with_geometric_quantization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \emph{double field theory} has come to be used for [[field theory]] ([[prequantum field theory]]/[[quantum field theory]]) on [[spacetimes]] which are [[T-folds]] ([[doubled geometries]]) hence for ``[[T-duality]]-[[equivariance|equivariant]] field theory''. \hypertarget{tdualitycovariant_formalism}{}\subsection*{{T-duality-covariant formalism}}\label{tdualitycovariant_formalism} \hypertarget{parahermitian_geometry}{}\subsubsection*{{Para-hermitian geometry}}\label{parahermitian_geometry} The use of para-hermitian geometry in Double Field Theory was introduced by Izu Vaisman in (\hyperlink{Vaisman}{I.Vaisman 2012}), then by David Svoboda (\hyperlink{Svoboda}{D.Svoboda 2018}). $\backslash$begin\{defn\} An \emph{almost para-complex manifold} is a [[manifold]] $M$ equipped with a vector bundle endomorphism $F\in\mathrm{End}(T M)$ such that $F^2=1$ and its $\pm 1$ eigenbundles $T^\pm M$ have same rank. $\backslash$end\{defn\} $\backslash$begin\{defn\} The \emph{para-complex projectors} are the canonical projectors onto $T^\pm M$ defined by $P_\pm = \frac{1}{2}(1\pm F)$ $\backslash$end\{defn\} $\backslash$begin\{defn\} A $\pm$\emph{-para-complex manifold} is an almost para-complex manifold $(M,F)$ such that $T^\pm M$ of $F$ is Frobenius integrable as a distribution. A \emph{para-complex} manifold is a manifold that is both $+$-para-complex and $-$-para-complex. $\backslash$end\{defn\} $\backslash$begin\{rmk\} A doubled manifold $M$ equipped with the $O(d,d)$-structure $\eta$ carries a natural almost para-hermitian structure. On patches $U$ with coordinates $(x^\mu,\tilde{x}_\mu)$ we have the canonical para-complex structure \begin{displaymath} F\frac{\partial}{\partial x^\mu} = \frac{\partial}{\partial x^\mu},\,\, F\frac{\partial}{\partial \tilde{x}_\mu} = - \frac{\partial}{\partial \tilde{x}_\mu} \end{displaymath} with eigenbundles \begin{itemize}% \item $T^+U=\big\langle\frac{\partial}{\partial x^\mu}\big\rangle$, \item $T^-U=\big\langle\frac{\partial}{\partial \tilde{x}_\mu}\big\rangle$, \end{itemize} with associated foliations \begin{itemize}% \item $\mathcal{F}_+=\{x^\mu = \mathrm{const}\}$, \item $\mathcal{F}_-=\{\tilde{x}_\mu = \mathrm{const}\}$. \end{itemize} In analogy with [[complex geometry]], if we define $\Omega^{r,s}(M)$ as the space of sections of $\Lambda^r(T^+M)\wedge\Lambda^s(T^-M)$, we have the decomposition \begin{displaymath} \Omega^k(M)=\bigoplus_{k=r+s}\Omega^{r,s}(M) \end{displaymath} Let us call $\pi^{r,s}:\Omega^{r+s}(M)\rightarrow\Omega^{r,s}(M)$ the canonical projector induced by $P_\pm$. In analogy with complex geometry, there are \emph{para-Dolbeault operators}: \begin{itemize}% \item $\mathrm{d}^+=\pi^{r+1,s}\circ\mathrm{d} : \Omega^{r,s}(M)\longrightarrow \Omega^{r+1,s}(M)$, \item $\mathrm{d}^-=\pi^{r,s+1}\circ\mathrm{d} : \Omega^{r,s}(M)\longrightarrow \Omega^{r,s+1}(M)$. \end{itemize} with properties: \begin{itemize}% \item $\mathrm{d} = \mathrm{d}^+ + \mathrm{d}^-$, \item $(\mathrm{d}^\pm)^2= 0$, \item $\mathrm{d}^+\mathrm{d}^-+\mathrm{d}^-\mathrm{d}^+ =0$. \end{itemize} We can also define [[Lie derivatives]] on the eigenbundles $T^\pm M$ by \begin{displaymath} \mathcal{L}^\pm_{X_\pm}\xi = (\mathrm{d}^\pm\iota_{X_\pm} + \iota_{X_\pm}\mathrm{d}^\pm)\xi \end{displaymath} for any vector $X_\pm\in\Gamma(T^\pm M)$ and $\xi\in\Omega^{r,s}(M)$. $\backslash$end\{rmk\} $\backslash$begin\{defn\} An \emph{almost para-hermitian manifold} is an almost para-complex manifold $M$ equipped with a compatible metric, i.e a symmetric tensor $\eta\in\mathrm{Sym}^2(T M)$ such that $\eta(F\cdot\,,F\cdot\,)=-\eta(\,\cdot\,,\,\cdot\,)$. $\backslash$end\{defn\} $\backslash$begin\{rmk\} The contraction with the metric $\eta$ defines two isomorphisms \begin{displaymath} \phi^\pm : T^\pm M \rightarrow (T^\mp M)^\ast \end{displaymath} by \begin{itemize}% \item $\phi^\pm(X_\pm) = X_\pm^\flat$ and \item $(\phi^\pm)^{-1}(\xi_\pm)=\xi^\sharp$ \end{itemize} that map a vector in $T^\pm M$ to a $1$-form in $(T^\mp M)^\ast$ and vice-versa. We used the notation $\flat,\sharp$ for the musical isomorphisms induced by the metric $\eta$ between $T M$ and $T^\ast M$. This can be used to define a new couple of isomorphisms \begin{displaymath} \Phi^\pm : T M \longrightarrow T^\pm M\oplus(T^\pm M)^\ast \end{displaymath} that maps a vector a vector $X=X_++X_-$ with $X_\pm\in T^\pm M$ into $X_+ + X_-^\flat$. $\backslash$end\{rmk\} $\backslash$begin\{defn\} A \emph{para-hermitian manifold} is an almost para-hermitian manifold $(M,\eta,F)$ such that $(M,F)$ is a para-complex manifold. $\backslash$end\{defn\} \hypertarget{foliated_courant_algebroid_and_spacetime}{}\subsubsection*{{Foliated Courant algebroid and spacetime}}\label{foliated_courant_algebroid_and_spacetime} Given a $+$-para-hermitian manifold $(M,\eta,F)$, consider the triple $\big(T^+ M,[\,\cdot\,,\,\cdot\,]_+,1_{T^+M}\big)$ where \begin{itemize}% \item the skew-symmetric bracket $[\,\cdot\,,\,\cdot\,]_+:=[\,\cdot\,,\,\cdot\,]|_{T^+ M}$ \item the anchor $1_{T^\pm M}:=1_{T M}|_{T^\pm M}$ are the restrictions of Lie bracket and identity of $T M$. \end{itemize} Since $M$ is $+$-para-hermitian we have that $T^+M$ is integrable and therefore it is the tangent bundle $T^+M = T\mathcal{F}_\pm$ of a foliation $\mathcal{F}_+$. This means that this triple is just the tangent Lie algebroid of the foliation $\mathcal{F}_+$: \begin{displaymath} \big(T^+ M,[\,\cdot\,,\,\cdot\,]_+,1_{T^+ M}\big) = \big(T\mathcal{F}_+,[\,\cdot\,,\,\cdot\,]_{T\mathcal{F}_+},1_{T\mathcal{F}_+}\big). \end{displaymath} There is a natural Courant algebroid structure on the bundle $T^+ M\oplus(T^+ M)^\ast$ with skew-symmetric pairing \begin{displaymath} [X+\alpha,Y+\beta]_{+} = [X,Y]_+ + \mathcal{L}_X^+\beta -\mathcal{L}_Y^+\alpha +\mathrm{d}_+(\iota_Y\alpha) \end{displaymath} and symmetric pairing \begin{displaymath} \langle X+\alpha,Y+\beta\rangle_+ = \iota_X\beta + \iota_Y\alpha. \end{displaymath} The isomorphism $\Phi^+:T^+ M\oplus (T^+ M)^\ast\rightarrow T^+ M\oplus T^- M = T M$ previously defined induces a Courant algebroid isomorphism and hence a Courant algebroid structure on $T M$. This induces a metric $\eta$ on $M$ and a skew-symmetric pairing on $T M$ by \begin{displaymath} [[X_++X_-,Y_++Y_-]]_+ := [X_+,Y_+] + \Big[\mathcal{L}_{X_+}^+ Y_-^\flat -\mathcal{L}_{Y_+}^+ X_-^\flat +\mathrm{d}_+\big(\eta(X_-,Y_+)\big)\Big]^\sharp, \end{displaymath} where $X\in T M$ is split in $X_\pm=P_\pm X$. $\backslash$begin\{rmk\} Since $M$ is assumed $+$-para-hermitian, $T^+ M\oplus (T^+ M)^\ast$ can be written as $T\mathcal{F}_+\oplus T^\ast\mathcal{F}_+$. Therefore we constructed an isomorphism between the Courant algebroid on the whole $T M$ and the generalized tangent bundle $T\mathcal{F}_+\oplus T^\ast\mathcal{F}_+$ of the foliation. In other terms para-hermitian geometry of the doubled manifold $M$ reduces to Generalized Geometry of physical spacetime. $\backslash$end\{rmk\} $\backslash$begin\{rmk\} The same argument can be clearly applied to $T^-M$ too. $\backslash$end\{rmk\} \hypertarget{cbracket}{}\subsubsection*{{C-bracket}}\label{cbracket} In previous section we assumed that the $+1$-eigenbundle $T^+M$ is integrable. This is equivalent to assuming that there exists a well defined foliation that can be interpreted as the physical spacetime. However it is possible to construct a more general bracket that does not require such an assumption, but only an almost para-complex structure. Therefore it works even when a global physical spacetime foliation is not defined. This is achieved by Vaisman with the definition of \emph{C-bracket} by using a generalization of the notion of Levi-Civita connection (look (\hyperlink{Vaisman}{I.Vaisman 2012})). In the special case of an (inetgrable) para-hermitian manifold C-bracket is given by \begin{displaymath} [[ X+\alpha,Y+\beta ]]_{\mathrm{C}} = [X,Y] + \mathcal{L}_X\beta -\mathcal{L}_Y\alpha + \mathrm{d}\big(\eta(X+\alpha,Y+\beta)\big) + [\alpha,\beta]^\ast + \mathcal{L}^\ast_\alpha Y -\mathcal{L}^\ast_\beta X - \mathrm{d}^\ast\big(\eta(X+\alpha,Y+\beta)\big) \end{displaymath} where $[\,\cdot\,,\,\cdot\,]$, $\mathcal{L}_X$ and $\mathrm{d}$ are usual Lie bracket, Lie derivative and differential on $T\mathcal{F}_+$. On the other hand $[\,\cdot\,,\,\cdot\,]^\ast$, $\mathcal{L}^\ast_\alpha$ and $\mathrm{d}^\ast$ are Lie bracket, Lie derivative and differential on $T\mathcal{F}_+^\ast$ induced by the former ones. \hypertarget{analogy_with_geometric_quantization}{}\subsubsection*{{Analogy with geometric quantization}}\label{analogy_with_geometric_quantization} The analogy between [[geometric quantization]] and DFT was firstly noticed by [[David Berman]]. Given a symplectic manifold $(M,\omega)$ there exist couples of lagrangian foliations $\mathcal{F}_+,\mathcal{F}_-$ of $M$ defined by \begin{displaymath} \forall X,Y\in T\mathcal{F}_\pm, \: \omega(X,Y)=0. \end{displaymath} For example for a symplectic space $(\mathbb{R}^{2d},\omega=\mathrm{d}x^\mu\wedge\mathrm{p}_\mu)$ we can have $\mathcal{F}_+ = \{x^\mu = \mathrm{const} \}$ and $\mathcal{F}_-= \{p_\mu = \mathrm{const} \}$. But notice that any symplectic rotation of this choice is a couple of lagrangian foliations that works fine. Heuristically, in geometrical quantization we make a choice of a couple of lagrangian foliations $\mathcal{F}_\pm$ to ``select'' a physical spacetime $\mathcal{F}_+$ from the whole symplectic-covariant theory on $M$. Similarly in DFT, when $M$ is an (integrable) para-hermitian manifold we make a choice of a couple of lagrangian foliations $\mathcal{F}_\pm$ to ``select'' a physical spacetime $\mathcal{F}_+$ from the whole T-duality-covariant theory on $M$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[doubled geometry]], [[generalized geometry]], [[exceptional generalized geometry]] \item [[exceptional field theory]] \item [[T-fold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The idea of ``doubled spacetime geometry'' is a variant of the idea of [[T-folds]], due to \begin{itemize}% \item [[Chris Hull]], \emph{Doubled geometry and T-folds} JHEP0707:080,2007 (\href{http://arxiv.org/abs/hep-th/0605149}{arXiv:hep-th/0605149}) \end{itemize} The coinage of the term ``double field theory'' for field theory on such doubled geometry goes back to \begin{itemize}% \item [[Chris Hull]], [[Barton Zwiebach]], \emph{Double Field Theory}, JHEP 0909:099,2009 (\href{http://arxiv.org/abs/0904.4664}{arXiv:0904.4664}) \end{itemize} Discussion in the context of [[L-infinity algebra]] includes \begin{itemize}% \item [[Andreas Deser]], [[Jim Stasheff]], \emph{Even symplectic supermanifolds and double field theory}, Communications in Mathematical Physics November 2015, Volume 339, Issue 3, pp 1003-1020 (\href{http://arxiv.org/abs/1406.3601}{arXiv:1406.3601}) \end{itemize} Discussion of an extended version of Riemannian geometry suitable for the description of double field theory \begin{itemize}% \item [[Andreas Deser]], [[Christian Saemann]], \emph{Extended Riemannian Geometry I: Local Double Field Theory}, (\href{https://arxiv.org/abs/1611.02772}{arXiv:1611.02772}) \end{itemize} Discussion about para-Hermitian formalism started in \begin{itemize}% \item Izu Vaisman, \emph{On the geometry of double field theory} Journal of Mathematical Physics 53, 033509 (2012) (\href{https://arxiv.org/abs/1203.0836v1}{arXiv:1203.0836}) \end{itemize} Para-Hermitian formalism further developed and generalized in \begin{itemize}% \item David Svoboda, \emph{Algebroid structures on para-Hermitian manifolds} Journal of Mathematical Physics 59, 122302 (2018) (\href{https://arxiv.org/abs/1802.08180}{arxiv:1802.08180}) \end{itemize} \end{document}