\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{double negation translation} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{construction}{Construction}\dotfill \pageref*{construction} \linebreak \noindent\hyperlink{propositional_case}{Propositional case}\dotfill \pageref*{propositional_case} \linebreak \noindent\hyperlink{firstorder_case}{First-order case}\dotfill \pageref*{firstorder_case} \linebreak \noindent\hyperlink{higherorder_case}{Higher-order case}\dotfill \pageref*{higherorder_case} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Double negation translation} is a method for converting [[propositions]] [[valid]] in [[classical logic]] into propositions valid in [[intuitionistic logic]]. It can be used to establish relative consistency results. For example, it may be possible to show that the proof of a [[contradiction]] in a classical theory could be translated to the proof of a contradiction in a constructive theory. [[Kurt Gödel]] used this technique to show that [[Peano arithmetic]] and [[Heyting arithmetic]] are equiconsistent. Double negation translation was discovered independently by a number of mathematicians including [[Kurt Gödel]], [[Gerhard Gentzen]], and [[Andrey Kolmogorov]], and is also called the \textbf{G\"o{}del--Gentzen negative translation}. \hypertarget{construction}{}\subsection*{{Construction}}\label{construction} The traditional descriptions are highly syntactic, but can be motivated by recalling some conceptual relationships between [[Boolean algebras]] (which are algebras for classical propositional logic) and [[Heyting algebras]] (which are algebras for intuitionistic propositional logic). \hypertarget{propositional_case}{}\subsubsection*{{Propositional case}}\label{propositional_case} Recall from the article [[Heyting algebra]] that the [[left adjoint]] $F$ to the [[forgetful functor]] \begin{displaymath} U \colon Bool \to Heyt \end{displaymath} is given objectwise by taking a Heyting algebra $L$ to the poset $L_{\neg\neg}$ of [[regular elements]] $x \in L$, i.e., those that are fixed by [[double negation]]: $x = \neg \neg x$. It was shown that $L_{\neg\neg}$ is a Boolean algebra, and $\neg \neg \colon L \to L_{\neg\neg}$ is a Heyting algebra homomorphism which is universal among Heyting algebra maps $L \to U B$ into Boolean algebras. In particular, if $Heyt(S)$ is the free Heyting algebra on a set of [[variables]] $S$, it follows by composing left adjoints \begin{displaymath} Set \stackrel{free}{\to} Heyt \stackrel{F}{\to} Bool \end{displaymath} that $Heyt(S)_{\neg\neg}$ is the free Boolean algebra on $S$. Furthermore, it was shown in [[Heyting algebra]] that for Heyting algebras $L$, \begin{itemize}% \item $\neg\neg \colon L \to L$ preserves finite [[meets]]; \item $\neg\neg \colon L \to L$ preserves the [[implication]] operation $\Rightarrow$. \end{itemize} Consequently, the inclusion of regular elements $L_{\neg\neg} \to L$ also preserves meets and implications, \textbf{strictly}. This gives the following result. \begin{thm} \label{}\hypertarget{}{} If $p \Rightarrow q$ is a [[tautology]] in classical propositional logic, then $(\neg \neg p) \Rightarrow (\neg \neg q)$ is a tautology in intuitionistic propositional logic, and conversely. \end{thm} \begin{proof} Here $p$ and $q$ are [[term]] expressions in variables $x_i \in S$ over the signature $(0, 1, \vee, \wedge, \Rightarrow)$. To say $p \Rightarrow q$ is a classical tautology means that $1 \leq (p \Rightarrow q)$ holds when interpreted in $Bool(S)$. But since $Bool(S) = Heyt(S)_{\neg\neg}$, this is equivalent to saying that \begin{displaymath} 1 \leq \neg\neg(p \Rightarrow q) = (\neg\neg p) \Rightarrow (\neg\neg q) \end{displaymath} when interpreted in $Heyt(S)$, which is to say that $(\neg \neg p) \Rightarrow (\neg\neg q)$ is an intuitionistic tautology. \end{proof} Continuing this thought: the join $\vee$ in $Bool(S) = Heyt_{\neg\neg}$ is computed as \begin{displaymath} a \vee_{Bool} b = \neg\neg(a \vee_{Heyt} b) \end{displaymath} since $\neg\neg \colon Heyt(S) \to Heyt(S)_{\neg\neg}$ preserves joins (it is a left adjoint). Putting all this together, because $\neg\neg \colon Heyt(S) \to Heyt(S)_{\neg\neg}$ preserves Heyting algebra structure, we arrive at the following syntactic translation. \begin{udef} The double-negation translation $p \mapsto p^{N}$ on term expressions in the theory of Heyting algebras $L$ is defined by induction as follows. \begin{itemize}% \item $x^N = \neg\neg x$ for variables $x$. \item $0^N = 0$ (since $\neg\neg \colon L \to L$ preserves $0$) \item $1^N = 1$ (since $\neg\neg \colon L \to L$ preserves $1$) \item $(p \wedge q)^N = p^N \wedge q^N$ (since $\neg\neg \colon L \to L$ preserves the meet operation) \item $(p \Rightarrow q)^N = p^N \Rightarrow q^N$ (since $\neg\neg \colon L \to L$ preserves the implication operation) \item $(p \vee q)^N = \neg\neg(p^N \vee q^N)$. \end{itemize} \end{udef} Thus, by Glivenko's theorem, $p$ is a classical tautology if and only if $p^N$ is an intuitionistic tautology. This result may be extended to theories as well: suppose $L$ is an intuitionistic theory or Heyting algebra, given by a presentation as a coequalizer in $Heyt$: \begin{displaymath} Heyt(T) \stackrel{\to}{\to} Heyt(S) \to L. \end{displaymath} Then, since the functor $L \mapsto L_{\neg\neg}$ is a left adjoint, it takes this coequalizer to a coequalizer \begin{displaymath} Bool(T) \stackrel{\to}{\to} Bool(S) \to L_{\neg\neg} \end{displaymath} so that an term expression $p$ is a theorem in the classical theory $L_{\neg\neg}$ if and only if $p^N$ is a theorem in the intuitionistic theory $L$. \hypertarget{firstorder_case}{}\subsubsection*{{First-order case}}\label{firstorder_case} Double negation translation for a formula, $\phi$, of a [[first-order language]] is defined inductively by the following clauses: \begin{itemize}% \item $\phi^N = \neg \neg \phi$, for atomic $\phi$. \item $(\phi \wedge \psi)^N = \phi^N \wedge \psi^N$. \item $(\phi \vee \psi)^N = \neg(\neg \phi^N \wedge \neg \psi^N)$ (or equivalently, $\neg \neg (\phi^N \vee \psi^N)$) \item $(\phi \to \psi)^N = \phi^N \to \psi^N$. \item $(\neg \phi)^N = \neg \phi^N$. \item $(\forall x \phi)^N = \forall x \phi^N$. \item $(\exists x \phi)^N = \neg \forall x \neg \phi^N$ (or equivalently, $\neg \neg \exists x \phi^N$). \end{itemize} \hypertarget{higherorder_case}{}\subsubsection*{{Higher-order case}}\label{higherorder_case} The basic idea here is that any [[topos]] $E$ gives rise to a [[Boolean topos]] $E_{\neg\neg}$. \hypertarget{references}{}\subsection*{{References}}\label{references} Informal exposition of a tiny aspect of this double negation business is in \begin{itemize}% \item [[Andrej Bauer]], \emph{\href{http://math.andrej.com/2008/08/13/intuitionistic-mathematics-for-physics/}{Intuitionistic mathematics for physics}}, 2008 \end{itemize} [[!redirects double negation translation]] [[!redirects double negation translations]] [[!redirects double-negation translation]] [[!redirects double-negation translations]] [[!redirects negative translation]] [[!redirects negative translations]] \end{document}