\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{duality between M/F-theory and heterotic string theory} \begin{quote}% This entry is about [[M-theory]]/[[F-theory]] [[KK-compactification|compactified]] on [[K3-surfaces]]. For [[M-theory]] on [[MO9]]-planes see instead at \emph{[[HoĊ™ava-Witten theory]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{aspects}{Aspects}\dotfill \pageref*{aspects} \linebreak \noindent\hyperlink{from_mbranes_to_fbranes_to_heterotic_strings_and_ns5branes}{From M-branes to F-branes to heterotic strings and NS5-branes}\dotfill \pageref*{from_mbranes_to_fbranes_to_heterotic_strings_and_ns5branes} \linebreak \noindent\hyperlink{NonReducibleHeteroticGaugeBackgrounds}{Non-reducible heterotic $E_8$-gauge backgrounds}\dotfill \pageref*{NonReducibleHeteroticGaugeBackgrounds} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{for_type_iia_and_mtheory}{For type IIA and M-theory}\dotfill \pageref*{for_type_iia_and_mtheory} \linebreak \noindent\hyperlink{for_ftheory}{For F-theory}\dotfill \pageref*{for_ftheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[duality in string theory]]. The [[non-perturbative effect|non-perturbative]] enhancement of [[duality between heterotic and type II string theory]]: [[F-theory]]$\,$ ``[[KK-compactification|KK-compactified]]'' on an [[elliptic fibration|elliptically fibered]] [[K3]] with a [[section]] is supposed to be equivalent to [[heterotic string theory]] [[KK-compactification|KK-compactified]] on a [[2-torus]]. More generally, [[F-theory]] on a [[complex manifold|complex]] $n$-dimensional $X$ fibered $X\to B$ with elliptic [[K3]]-[[fibers]] is supposed to be equivalent to [[heterotic string theory]] on an [[elliptic fibration|elliptically fibered]] [[Calabi-Yau manifold]] $Z \to B$ of [[complex manifold|complex]] [[dimension]] $(n-1)$. A detailed discussion of the [[equivalence]] of the respective [[moduli spaces]] is originally due to (\hyperlink{FriedmanMorganWitten97}{Friedman-Morgan-Witten 97}). A review of this is in (\hyperlink{Donagi98}{Donagi 98}). From the abstract of (\hyperlink{Donagi98}{Donagi 98}). \begin{quote}% The [[heterotic string theory|heterotic string]] [[KK-compactification|compactified]] on an $(n-1)$-[[dimension|dimensional]] [[elliptic fibration|elliptically fibered]] [[Calabi-Yau variety|Calabi-Yau]] $Z \to B$ is conjectured to be [[duality in string theory|dual]] to [[F-theory]] [[KK-compactification|compactified]] on an $n$-dimensional [[Calabi-Yau variety|Calabi-Yau]] $X \to B$, fibered over the same base with [[elliptic fibration|elliptic]] [[K3]] fibers. In particular, the [[moduli]] of the two theories should be [[isomorphism|isomorphic]]. The cases most relevant to the physics are $n=2$, $3$, $4$, i.e. the [[KK-compactification|compactification]] is to [[dimensions]] $d=8$, $6$ or $4$ respectively. Mathematically, the richest picture seems to emerge for $n=3$, where the [[moduli space]] involves an analytically [[integrable system]] whose fibers admit rather different descriptions in the two theories. \end{quote} \hypertarget{aspects}{}\subsection*{{Aspects}}\label{aspects} \hypertarget{from_mbranes_to_fbranes_to_heterotic_strings_and_ns5branes}{}\subsubsection*{{From M-branes to F-branes to heterotic strings and NS5-branes}}\label{from_mbranes_to_fbranes_to_heterotic_strings_and_ns5branes} [[!include F-branes -- table]] \hypertarget{NonReducibleHeteroticGaugeBackgrounds}{}\subsubsection*{{Non-reducible heterotic $E_8$-gauge backgrounds}}\label{NonReducibleHeteroticGaugeBackgrounds} There are some [[F-theory]] backgrounds whose supposed dual in [[heterotic string theory]] involves an [[E8]]-[[principal connection]] which is not [[reduction of the structure group|reducible]] to [[SemiSpin(16)]] (\hyperlink{DistlerSharpe10}{Distler-Sharpe 10, section 5}), while in fact the traditional construction of the heterotic [[worldsheet]] theory only covers this case. In (\hyperlink{DistlerSharpe10}{Distler-Sharpe 10, section 7-8}) it is argued that therefore a more general formulation of [[heterotic string theory]] needs to involve [[parameterized WZW models]]. See also at \emph{\href{http://ncatlab.org/nlab/show/heterotic+string+theory#GeneralGaugeBackgroundsAndParameterizedWZWModels}{heterotic string -- Properties -- General gauge backgrounds and parameterized WZW models}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include F-theory compactifications -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{for_type_iia_and_mtheory}{}\subsubsection*{{For type IIA and M-theory}}\label{for_type_iia_and_mtheory} The conjectured duality between [[type IIA string theory]] [[KK-compactification|KK-compactified]] on [[K3]] times an [[n-torus]] and [[heterotic string theory]] on the $(n+2)$-torus is originally due to \begin{itemize}% \item [[Chris Hull]], [[Paul Townsend]], section 6 of \emph{Unity of Superstring Dualities}, Nucl.Phys.B438:109-137,1995 (\href{http://arxiv.org/abs/hep-th/9410167}{arXiv:hep-th/9410167}) \item [[Edward Witten]], section 4 of \emph{[[String Theory Dynamics In Various Dimensions]]}, Nucl.Phys.B443:85-126,1995 (\href{http://arxiv.org/abs/hep-th/9503124}{arXiv:hep-th/9503124}) \end{itemize} Review includes \begin{itemize}% \item [[Paul Aspinwall]], [[David Morrison]], \emph{String Theory on K3 Surfaces}, in [[Brian Greene]], [[Shing-Tung Yau]] (eds.), \emph{Mirror Symmetry II}, International Press, Cambridge, 1997, pp. 703-716 (\href{https://arxiv.org/abs/hep-th/9404151}{arXiv:hep-th/9404151}) \item [[Paul Aspinwall]], \emph{K3 Surfaces and String Duality}, in [[Shing-Tung Yau]] (ed.): \emph{Differential geometry inspired by string theory} 1-95 (\href{https://arxiv.org/abs/hep-th/9611137}{arXiv:9611137} \href{http://inspirehep.net/record/426102}{spire:426102}) \end{itemize} Further discussion includes \begin{itemize}% \item [[Paul Aspinwall]], \emph{Enhanced Gauge Symmetries and K3 Surfaces}, Phys.Lett. B357 (1995) 329-334 (\href{http://arxiv.org/abs/hep-th/9507012}{arXiv:hep-th/9507012}) \item [[Eric Bergshoeff]], C. Condeescu, G. Pradisi, F. Riccioni, \emph{Heterotic-Type II duality and wrapping rules}, JHEP12(2013)057 (\href{https://arxiv.org/abs/1311.3578}{arXiv:1311.3578}) \end{itemize} Specifically in relation to the putative [[K-theory]]-classification of [[D-brane charge]]: \begin{itemize}% \item Inaki Garcia-Etxebarria, [[Angel Uranga]], \emph{From F/M-theory to K-theory and back}, JHEP 0602:008,2006 (\href{https://arxiv.org/abs/hep-th/0510073}{arXiv:hep-th/0510073}) \end{itemize} Specifically in [[M-theory on G2-manifolds]]: \begin{itemize}% \item [[Michael Atiyah]], [[Edward Witten]] section 6.4 of \emph{$M$-Theory dynamics on a manifold of $G_2$-holonomy}, Adv. Theor. Math. Phys. 6 (2001) (\href{http://arxiv.org/abs/hep-th/0107177}{arXiv:hep-th/0107177}) \end{itemize} Specifically in relation to [[Moonshine]]: \begin{itemize}% \item [[Miranda Cheng]], Sarah M. Harrison, Roberto Volpato, Max Zimet, \emph{K3 String Theory, Lattices and Moonshine} (\href{https://arxiv.org/abs/1612.04404}{arXiv:1612.04404}) \end{itemize} \hypertarget{for_ftheory}{}\subsubsection*{{For F-theory}}\label{for_ftheory} Discussion for [[F-theory]] includes \begin{itemize}% \item [[David Morrison]], [[Cumrun Vafa]], \emph{Compactifications of F-Theory on Calabi--Yau Threefolds -- I}, Nucl.Phys. B473 (1996) 74-92 (\href{http://arxiv.org/abs/hep-th/9602114}{arXiv:hep-th/9602114}) \item [[David Morrison]], [[Cumrun Vafa]], \emph{Compactifications of F-Theory on Calabi--Yau Threefolds -- II}, Nucl.Phys.B476:437-469,1996 (\href{http://arxiv.org/abs/hep-th/9603161}{arXiv:hep-th/9603161}) \item [[Ashoke Sen]], \emph{F-theory and Orientifolds} (\href{http://arxiv.org/abs/hep-th/9605150}{arXiv:hep-th/9605150}) \item Robert Friedman, [[John Morgan]], [[Edward Witten]], \emph{Vector Bundles And F Theory}, Commun.Math.Phys.187:679-743, 1997 (\href{http://arxiv.org/abs/hep-th/9701162}{arXiv:hep-th/9701162}) \item [[Paul Aspinwall]], \emph{M-Theory Versus F-Theory Pictures of the Heterotic String}, Adv.Theor.Math.Phys.1:127-147, 1998 (\href{http://arxiv.org/abs/hep-th/9707014}{arXiv:hep-th/9707014}) \end{itemize} Review of (\hyperlink{FriedmanMorganWitten97}{Friedman-Morgan-Witten 97}) is in \begin{itemize}% \item [[Ron Donagi]], \emph{ICMP lecture on heterotic/F-theory duality} (\href{http://arxiv.org/abs/hep-th/9802093}{arXiv:hep-th/9802093}) \item Bj\"o{}rn Andreas, \emph{$N=1$ Heterotic/F-theory duality}, PhD thesis (\href{http://edoc.hu-berlin.de/dissertationen/physik/andreas-bjoern/PDF/Andreas.pdf}{pdf}) \end{itemize} with more details in \begin{itemize}% \item [[Ron Donagi]], [[Eyal Markman]], \emph{Spectral curves, algebraically completely integrable Hamiltonian systems, and moduli of bundles} (\href{http://arxiv.org/abs/alg-geom/9507017}{arXiv:alg-geom/9507017}) \end{itemize} The issue with non-reducible $E_8$-gauge connections is highligted in \begin{itemize}% \item [[Jacques Distler]], [[Eric Sharpe]], section 5 of \emph{Heterotic compactifications with principal bundles for general groups and general levels}, Adv. Theor. Math. Phys. 14:335-398, 2010 (\href{http://arxiv.org/abs/hep-th/0701244}{arXiv:hep-th/0701244}) \end{itemize} On a subtlety in the application of the [[Narasimhan-Seshadri theorem]] in the duality: \begin{itemize}% \item Herbert Clemens, Stuart Raby, \emph{Heterotic/F-theory Duality and Narasimhan-Seshadri Equivalence} (\href{https://arxiv.org/abs/1906.07238}{arxiv:1906.07238}) \end{itemize} [[!redirects duality between F-theory and heterotic string theory]] [[!redirects F/M-theory on elliptically fibered Calabi-Yau 2-folds]] [[!redirects duality between heterotic string theory and M/F-theory]] \end{document}