\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{effect algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \begin{quote}% Caveat: There is an unrelated notion of ``effect of a computation''; that is rather in proximity to the entry [[monad (in computer science)]]. \end{quote} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{morphisms}{Morphisms}\dotfill \pageref*{morphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{relation_to_dposets}{Relation to D-Posets}\dotfill \pageref*{relation_to_dposets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{reference}{Reference}\dotfill \pageref*{reference} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[quantum mechanics]] a [[self-adjoint operator]] $A$ on the given [[Hilbert space]] such that its [[spectrum of an operator|spectrum]] lies between 0 and 1 (hence a [[positive operator]] which is $\leq 1$) is sometimes called an \emph{effect} or \emph{quantum effect} (see e.g. (\hyperlink{Ludwig}{Ludwig}, \hyperlink{Kraus}{Kraus})). These operators generalize [[projection operators]] and may be thought of as [[quantum observables]] with ``unsharp'' or ``fuzzy'' value. The notion of \emph{effect algebra} (due to (\hyperlink{FoulisBennet}{Foulis-Bennet 94})) is an abstraction of the structure exhibited by the collection of such effect operators. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[partial monoid|partial commutative monoid]] (PCM) consists of a set $M$ with a zero element $0 \in M$ and a partial binary operation $\vee : M \times M \to M$ satisfying the three requirements below. They involve the notation $x \perp y$ for: $x \vee y$ is defined; in that case $x, y$ are called orthogonal. \begin{enumerate}% \item Commutativity: $x\perp y$ implies $y\perp x$ and $x\vee y=y\vee x$. \item Associativity: $y\perp z$ and $x\perp(y\vee z)$ implies $x\perp y$ and $(x\vee y)\perp z$ and $x\vee (y\vee z)=(x\vee y)\vee z$. \item Zero: $0\perp x$ and $0\vee x=x$ \end{enumerate} (\hyperlink{FoulisBennet}{Foulis-Bennet 94} p.22) In a PCM, we define: $x \le y:\Leftrightarrow \exists_z. x \vee z = y$. This is a preorder on any PCM. \end{defn} \begin{prop} \label{}\hypertarget{}{} A PCM is preordered by $\le$. \end{prop} \begin{proof} Reflexivity is immediate from the Zero axiom, and transitivity follows easily from Associativity. \end{proof} \begin{defn} \label{}\hypertarget{}{} A \emph{generalized effect algebra} is a PCM $(E, 0, \vee)$ such that: \begin{enumerate}% \item Cancellation Law: If $a \perp b$, $a \perp c$ and $a \vee b = a \vee c$ then $b = c$. \item Positivity Law: If $a \perp b$ and $a \vee b = 0$ then $a = b = 0$. \end{enumerate} In a generalized effect algebra, we define: $y\ominus x=z:\Leftrightarrow y=x\vee z$ (which exists iff $x \le y$, and is unique by the Cancellation Law). \end{defn} \begin{prop} \label{}\hypertarget{}{} A generalized effect algebra is partially ordered by $\le$. \end{prop} \begin{proof} Suppose $x \le y$ and $y \le x$. Let $x \vee a = y$ and $y \vee b = x$. Then $x \vee (a \vee b) = x = x \vee 0$, and so $a \vee b = 0$ by the Cancellation Law. Therefore, $a = b = 0$ and so $x = y$. \end{proof} \begin{defn} \label{}\hypertarget{}{} An \emph{effect algebra} is a PCM $(E,0,\vee)$ with an orthocomplement. The latter is a unary operation $(-)^\perp :E\to E$ satisfying: \begin{enumerate}% \item Orthocomplement Law. $x^\perp\in E$ is the unique element in $E$ with $x\vee x^\perp=1$, where $1=0^\perp$. \item Zero-One Law. $x\perp 1\Rightarrow x=0$. \end{enumerate} For such an effect algebra one defines: $x\wedge y:=(x^\perp\vee y^\perp)^\perp$ (\hyperlink{FoulisBennet}{Foulis-Bennet 94} p. 23) \end{defn} \begin{prop} \label{}\hypertarget{}{} A structure $(E, 0, \vee)$ is an effect algebra iff it is a generalized effect algebra with a greatest element, in which case that greatest element is $1 = 0^\perp$. \end{prop} \begin{proof} Let $(E, 0, \vee)$ be an effect algebra. Then $E$ is a generalized effect algebra since: \begin{enumerate}% \item Cancellation Law. If $a \vee b = a \vee c$ then $a \vee b \vee (a \vee b)^\perp = a \vee c \vee (a \vee b)^\perp = 1$, and so $b = c = (a \vee (a \vee b)^\perp)^\perp$. \item Positivity Law. If $a \vee b = 0$ then $(a \vee b) \perp 1$, hence $a \perp 1$ and $b \perp 1$ by Associativity. Thus, $a = b = 0$ by the Zero-One Law. \end{enumerate} 1 is the greatest elements since, for any $x$, we have $x \vee x^\perp = 1$ and so $x \leq 1$. Conversely, let $(E, 0, \vee)$ be a generalized effect algebra with greatest element 1. Define $x^\perp = 1 \ominus x$ for all $x$. Then: \begin{enumerate}% \item Orthocomplement Law. $x^\perp$ is the unique element such that $x \vee x^\perp = 1$ by definition. \item Zero-One Law. If $x \perp 1$, then $1 \leq x \vee 1$, so $x \vee 1 = 1$. Thus, $x \vee 1 = 0 \vee 1$, and so $x = 0$ by the Cancellation Law. \end{enumerate} \end{proof} \begin{remark} \label{}\hypertarget{}{} If we consider $(-)\ominus y:up(y)\to down(y^\perp)$ and $(-)\vee y:down(y^\perp)\to up$ as functors between [[posets]] we have [[adjunctions]] \begin{displaymath} ((-\wedge y)\dashv (-\ominus y)\dashv (-\wedge y) \end{displaymath} Hence these functors are a [[Frobenius functor|frobenius pair]]. (\hyperlink{FoulisBennet}{Foulis-Bennet 94} p.25) \end{remark} \hypertarget{morphisms}{}\subsection*{{Morphisms}}\label{morphisms} \begin{defn} \label{}\hypertarget{}{} Let $E$ and $F$ be effect algebras. A \emph{morphism of effect algebras} $f : E \rightarrow F$ is a function such that: \begin{enumerate}% \item f(1) = 1 \item If $x \perp y$ then $f(x) \perp f(y)$ and $f(x \vee y) = f(x) \vee f(y)$. \end{enumerate} We write $\mathbf{EA}$ for the category of effect algebras and morphisms of effect algebras. \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} (1) [[effect algebra of predicates]] (2) The real unit inteval $[0,1]$ with $\vee$ being addition of real numbers is an effect algebra since $[0,1]$ is a pcm with zero object $0$ and commutative, associative addition of real numbers and $x\perp y$ iff $x+y\le 1$. The orthocomplement of $x\in [0,1]$ is given by $\x^\perp=1-x$. (3) Let $D$ denote the discrete-probability-distribution [[monad]] on $Set$ which sends a set $X$ to the collection \begin{displaymath} D(X):=\{r_1 x_1+\dots +r_n x_n|x_i\in X, r_i\in [0,1], \Sigma_i r_i=1\} \end{displaymath} of formal convex combinations of elements of $X$ and let $Kl(D)$ denote the [[Kleisli category]] of $D$ which has as objects (just) sets and a morphism $f:X\to Y$ in $Kl(D)$ is a function $f:X\to D(Y)$ which can be interpreted as a [[Markov chain]] where the [[probability]] of the transition $x\to x_i$ is the coefficient $r_i\in [0,1]$ in the the convex sum $f(x)=r_1 x_1+\dots+r_n x_n$. $Kl(D)$ has as coproducts coproducts of $Set$. A predicate on $X\in Kl(D)$is hence a function $p:X\to D(X+X)$ and $[id_X,id_X]\circ p =id_X$ means that $p(x)\in D(X+X)$ is a convex combination of elements of the form $k_1 x, k_2 x\in X+X$ such that we have $p(x)=\varphi(x)k_1 x +\psi(x)k_2 x$ with $\varphi(x),\psi(x)\in [0,1]$ such that $\varphi{x}+\psi(x)=1$. Hence $p(x)$ can be written as $p(x)=\varphi(x)k_1 x + (1-\varphi(x))k_2 x$. In particular a predicate is (uniquely determined by) a function $\varphi:X\to [0,1]$ to the [[unit interval]]. In this view the orthocomplemet of $\varphi(x)$ is the function $x\mapsto 1-\varphi(x)$ which is point-wise the orthocomplement of the unit interval in the second example. (4) In the category $Hilb$ of [[Hilbert space|Hilbert spaces]] the coproduct coincides with the product and hence is a [[biproduct]]. In this case a predicate $p:X\to X\otimes X$ on a Hilbert space $X$ has the form $p=\lt p_1,p_2\gt$ of a pair of maps and $[id_X,id_X]\circ p$ is equivalent to $p_1 +p_2=id_X$ where $+$ is point-wise addition. In particular $p_1$ and $p_2$ determine each other uniquely. And now comes the eponymous feature: The category $Hilb$ is a [[dagger category]] and the dagger morphism $(-)^\dagger:Hilb^{op}\to Hilb$ is the identity on objects and complex conjugationn on morphisms. An endomorphism $f:X\to X$ is called to be a \emph{positive endomorphism} if there is a $g$ such that $f=g^\dagger\circ g$ and a predicate on $X$ is called to be an \textbf{effect} (on $X$) if $p_1$ and $p_2$ are positive. Another name for effect is ``unsharp predicate''; in this terminology a ``sharp predicate'' is a subset of the set of projections onto $X$. (5) In a C$^\ast$-algebra the elements between 0 and 1 form an effect algebra with $(1-a)$ as the complement of $a$. (6) As a special case, we obtain the effect algebra of a [[von Neumann algebra]]. In general, this is not a lattice. \hyperlink{DeGroote}{De Groote} defines a \emph{spectral order} on self-adjoint operators which makes the collection of effects a [[boundedly complete lattice]]. However, this is not the canonical order on an effect algebra, as defined above. \hypertarget{relation_to_dposets}{}\subsection*{{Relation to D-Posets}}\label{relation_to_dposets} A parallel concept in the literature is that of \emph{D-poset} (sometimes called \emph{D-lattice}), originally introduced for the same purpose of studying fuzzy or quantum logics. These first appeared in \hyperlink{ChovKop}{ChovKop}. \begin{defn} \label{}\hypertarget{}{} A partial binary operation $\ominus$ on a poset $(P, \leq)$ is called a \emph{difference operation} (or simply \emph{difference}) on $P$ iff: (1) $a \leq b \leftrightarrow b \ominus a$ is defined, (2) $b \ominus a \leq b$, (3) $b \ominus (b \ominus a) = a$, (4) if $a \leq b \leq c$ implies that $c \ominus b \leq c \ominus a$ and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$. A \emph{D-poset} is a poset $(P, \leq, \ominus, 1)$ with a difference operation and greatest element $1 \in P$. \end{defn} Any effect algebra is automatically a D-poset under the difference $c := b \ominus a \iff a \oplus c = b$, well-defined by the cancellation property of generalized effect algebras. Ultimately this determines an isomorphism of categories between D-posets and effect algebras. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[density matrix]] \item [[separation algebra]] \end{itemize} \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} Quantum effect operators are discussed for instance in \begin{itemize}% \item G. Ludwig, \emph{Foundations of Quantum Mechanics I} Springer Verlag, New York, (1983) \end{itemize} \begin{itemize}% \item K. Kraus, \emph{States, Effects, and Operations} Springer Verlag, Berlin, (1983) \end{itemize} The notion of effect algebra is due to \begin{itemize}% \item D. J. Foulis, M. K. Bennet, \emph{Effect algebras and unsharp quantum logics}, Found. Phys. 24 (1994), 1 331--1 352. \end{itemize} Discussion of effect algebras in the context of [[categorical logic]] is in \begin{itemize}% \item [[Bart Jacobs]], \emph{New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic}, (2012) (\href{http://arxiv.org/abs/1205.3940}{arXiv:1205.3940}) \end{itemize} Discussion in the context of [[quantum logic]] is in section 6 of \begin{itemize}% \item Gianpiero Cattaneo, Maria Luisa Dalla Chiara, Roberto Giuntini and Francesco Paoli, \emph{Quantum Logic and Nonclassical Logics}, p. 127 in Kurt Engesser, Dov M. Gabbay, Daniel Lehmann (eds.) \emph{Handbook of Quantum Logic and Quantum Structures: Quantum Logic}, 2009 North Holland \end{itemize} A survey of the use of effect algebras in [[quantum mechanics]] is in \begin{itemize}% \item Teiko Heinosaari, Mario Ziman, \emph{Guide to Mathematical Concepts of Quantum Theory} (\href{http://arxiv.org/abs/0810.3536}{arXiv:0810.3536}) also appeared as: \emph{The Mathematical Language of Quantum Theory}, Cambridge University Press (2011) \item Hans de Groote, \emph{On a canonical lattice structure on the effect algebra of a von Neumann algebra} \href{http://arxiv.org/abs/math-ph/0410018}{arXiv:0410018} \end{itemize} Discussion in relation to [[presheaves]] on [[FinSet]]${}^{op}$ (hence in the [[classifying topos]] for objects) is in \begin{itemize}% \item Sam Staton, Sander Uijlen, \emph{Effect algebras, presheaves, non-locality and contextuality} (\href{http://www.cs.ru.nl/S.Uijlen/ICALP-camera-ready.pdf}{pdf}) \end{itemize} D-posets were first introduced in: \begin{itemize}% \item F. Chovanec and F. Kopka, \emph{D-lattices}, International Journal of Theoretical Physics, vol. 34, no. 8, pp. 1297–1302, 1995. \end{itemize} [[!redirects effect algebras]] [[!redirects effect]] [[!redirects effects]] [[!redirects quantum effect]] [[!redirects quantum effects]] [[!redirects effect algebra]] \end{document}