\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{elasticity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{InSolidStatePhysics}{In solid state physics}\dotfill \pageref*{InSolidStatePhysics} \linebreak \noindent\hyperlink{AnalogyWithAQualityOfSpace}{Analogy with a quality of space}\dotfill \pageref*{AnalogyWithAQualityOfSpace} \linebreak \noindent\hyperlink{in_natural_philosophy}{In natural philosophy}\dotfill \pageref*{in_natural_philosophy} \linebreak \noindent\hyperlink{InCategoricalLogic}{In categorical logic / topos theory}\dotfill \pageref*{InCategoricalLogic} \linebreak \noindent\hyperlink{RubberSheetGeometry}{Rubber-sheet geometry}\dotfill \pageref*{RubberSheetGeometry} \linebreak \noindent\hyperlink{RubberSheetAnalogyOfGravity}{Elasticity analogy of gravity}\dotfill \pageref*{RubberSheetAnalogyOfGravity} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_solid_state_physics_2}{In solid state physics}\dotfill \pageref*{in_solid_state_physics_2} \linebreak \noindent\hyperlink{as_an_analogy_for_topologydifferential_geometry}{As an analogy for topology/differential geometry}\dotfill \pageref*{as_an_analogy_for_topologydifferential_geometry} \linebreak \noindent\hyperlink{as_an_analogy_for_gravity}{As an analogy for gravity}\dotfill \pageref*{as_an_analogy_for_gravity} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{InSolidStatePhysics}{}\subsubsection*{{In solid state physics}}\label{InSolidStatePhysics} In [[physics]], specifically in \emph{[[solid state physics]]}, \emph{elasticity} is the tendency of solid materials to return to their original shape after being deformed. Mathematical elasticity theory (\hyperlink{LandauLifshitz59}{Landau-Lifshitz 59}) encodes the [[forces]] acting on a [[solid]] by a [[stress tensor]], and the amount of deformation by a \emph{[[strain tensor]]}. One distinguishes different types of elasticity: \begin{itemize}% \item linear elasticity: here the [[strain tensor]] is related by a [[linear equation]] to the [[stress tensor]] (a generalization of [[Hooke's law]]). To first [[infinitesimal]] order every type of material is approximately linearly elastic, the topic of \emph{\href{http://en.wikipedia.org/wiki/Infinitesimal_strain_theory}{infinitesimal strain theory}}. \item non-linear elasticity \begin{itemize}% \item hyperelasticity: exhibited by (soft) rubber \end{itemize} \end{itemize} \ldots{} \hypertarget{AnalogyWithAQualityOfSpace}{}\subsubsection*{{Analogy with a quality of space}}\label{AnalogyWithAQualityOfSpace} Elasticity is commonly used as an illustration via [[analogy]] of the nature of [[space]] in [[physics]], specifically that of [[manifolds]] and [[spacetimes]]. \hypertarget{in_natural_philosophy}{}\paragraph*{{In natural philosophy}}\label{in_natural_philosophy} In [[Georg Hegel]]`s \emph{[[Encyclopedia of the Philosophical Sciences]]} (1817) there is discussion (in the section \emph{\href{Science%20of%20Logic#Kohaesion}{Physik -- Die Koh\"a{}sion}}) of the \emph{[[cohesion]]} and \emph{elasticity} of some [[substance]] which Hegel says is is the [[unity of opposites|unity]] of [[space]] and [[time]] (\href{Science%20of%20Logic#PN261}{PN\S{}261}). \hypertarget{InCategoricalLogic}{}\paragraph*{{In categorical logic / topos theory}}\label{InCategoricalLogic} [[William Lawvere]] argued that the ``[[objective logic]]'' of this discussion is to be formalized via [[categorical logic]] by the axiomatics of [[cohesive toposes]] (see there for references), i.e. by [[modal type theory]] equipped with [[shape modality]] and [[flat modality]]. But Hegel goes on to speak of cohesion being refined to \emph{elasticity}: \begin{quote}% \href{Science+of+Logic#PN297Zusatz}{PN\S{}297Zusatz} Elasticity is the whole of cohesion. \end{quote} According to \href{Science+of+Logic#PN298}{PN\S{}298} this elasticity is related to the [[unity of opposites]] that consistute [[Zeno's paradox of motion]], hence to the modern concept of [[differentiation]] via a [[limit of a sequence]]. In terms of [[categorical logic]] this is precisely what is encoded in the [[infinitesimal shape modality]] and [[infinitesimal flat modality]] of ``[[differential cohesion]]'' (see there for detail). Sticking to imagery from [[solid state physics]], these modalities are reminiscent of concepts in \href{http://en.wikipedia.org/wiki/Infinitesimal_strain_theory}{infinitesimal strain theory}. Notice that this applies to \begin{quote}% structures built from relatively stiff elastic materials \end{quote} \hypertarget{RubberSheetGeometry}{}\paragraph*{{Rubber-sheet geometry}}\label{RubberSheetGeometry} These modalities \hyperlink{InCategoricalLogic}{above} induce an axiomatization of \emph{\href{differential+cohesive+%28infinity%2C1%29-topos#EtaleObjects}{manifolds and \'e{}tale groupoids}} (``[[derived schemes]]'') for which a common imagery in mathematics is given by elastic rubber sheets, reflecting the fact that these spaces on top of their [[cohesion]] have a more rigid [[shape modality|shape]], namely [[infinitesimal shape modality|infinitesimal shape]]. In this context the [[topology]] of [[manifolds]] is often referred to as \emph{rubber-sheet geometry} (e.g.\href{http://simple.wikipedia.org/wiki/Topology}{Wikipedia}, \hyperlink{Britton}{Britton}). \hypertarget{RubberSheetAnalogyOfGravity}{}\paragraph*{{Elasticity analogy of gravity}}\label{RubberSheetAnalogyOfGravity} Moreover, these modalities \hyperlink{InCategoricalLogic}{above} induce an axiomatization of [[Cartan geometry]], hence in particular of [[pseudo-Riemannian geometry]] and hence of [[gravity]] (``[[general relativity]]'') on these manifolds. A popular imagery for that illustrates the gravitational effect of massive bodies on light by a deformation of spacetime visualizes as an elastic wire frame. This is known as the \emph{rubber-sheet analogy} for gravity (e.g. \hyperlink{Das}{Das 11, p. 69}, \hyperlink{Gabor}{Gabor}, \hyperlink{Volk}{Volk, fig. 4 on p. 537}). This seems to go back to the technical result of (\hyperlink{Sakharov67}{Sakharov 67}), which is informally summarized in the seminal textbook (\hyperlink{MisnerThorneWheeler73}{Misner-Thorne-Wheeler 73}) as saying that \begin{quote}% gravity is ``an elasticity of space that arises from particle physics'' \end{quote} Further discussion of the analogy between the mathematical theory of elasticity and that of gravity include (\hyperlink{Tartaglia95}{Tartaglia 95},\hyperlink{MiddletonLangston13}{Middleton-Langston 13}, \hyperlink{WikipediaRubberSheetModelForGravity}{Wikipedia}). In order to think of not just [[topology]] but [[Riemannian geometry]] in the \hyperlink{RubberSheetGeometry}{above} context of elasticity, the \emph{rigidity} mentioned \hyperlink{RelativelyStiffElasticity}{further above} seems advisable. A \emph{rigidly elastic} body is to be expected to produce sound when struck. This is a common imagery in Riemannian geometry, as in ``[[hearing the shape of a drum]]''. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[formal smooth infinity-groupoid]] \item [[super formal smooth infinity-groupoid]] \item [[cohesion]], [[solidity]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_solid_state_physics_2}{}\subsubsection*{{In solid state physics}}\label{in_solid_state_physics_2} \begin{itemize}% \item [[Lev Landau]], [[Evgeny Lifshitz]], \emph{Theory of Elasticity}, part VII of \emph{[[Course of Theoretical Physics]]}, 1959, 1970 \end{itemize} \hypertarget{as_an_analogy_for_topologydifferential_geometry}{}\subsubsection*{{As an analogy for topology/differential geometry}}\label{as_an_analogy_for_topologydifferential_geometry} \begin{itemize}% \item Jill Britton, \emph{\href{http://jwilson.coe.uga.edu/EMT668/EMAT6680.F99/Estes/unit/dayten/topology1.html}{Rubber sheet geometry}} \end{itemize} \hypertarget{as_an_analogy_for_gravity}{}\subsubsection*{{As an analogy for gravity}}\label{as_an_analogy_for_gravity} The ``rubber-sheet analogy of gravity'' might go back to results in \begin{itemize}% \item [[Andrei Sakharov]], \emph{Vacvuum fluctuations in curved space and the theory of gravitation}, Doklady Akad. Nauk S.S.S.R. 177 70-71 (1967) \end{itemize} which were informally summarized in \begin{itemize}% \item [[Charles Misner]], [[Kip Thorne]], [[John Wheeler]], \emph{[[Gravitation]]}, 1973 \item [[John Wheeler]], \emph{Sakharov: A man of humility, understanding and leadership}, in \emph{Andrei Sakharov, Facets of a Life} (\href{https://books.google.co.uk/books?id=BTIziWmTX_0C&pg=PA647#v=onepage&q&f=false}{GoogleBooks}) \end{itemize} as saying that gravity is ``an elasticity of space that arises from particle physics''. The mathematical similarity between gravity and the physics of elasticity is discussed further in \begin{itemize}% \item A. Tartaglia, \emph{Four Dimensional Elasticity and General Relativity} (\href{http://arxiv.org/abs/gr-qc/9509043}{arXiv:gr-qc/9509043}) \item Chad A. Middleton, Michael Langston, \emph{Circular orbits on a warped spandex fabric} (\href{http://arxiv.org/abs/1312.3893}{arXiv:1312.3893}, \href{https://www.youtube.com/watch?v=F80HIolrsoc}{talk video}) \end{itemize} The analogy is mentioned for expositional purpose for instance in \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Gravity_well#The_rubber-sheet_model}{Gravity well -- The rubber-sheet model}} \item Gabor, \emph{\href{http://theory.uwinnipeg.ca/users/gabor/black_holes/slide5.html}{Gravity: Space as a rubber sheet}} \item Greg Volk, \emph{19th Natural Philosophy Alliance Proceedings} (\href{https://books.google.de/books?id=tZnZAwAAQBAJ&pg=PA537&lpg=PA537&dq=manifold+"rubber-sheet"&source=bl&ots=WAhzUMxkOR&sig=p2qNCPCR9-gnPi6_nb1S_Bz3-AI&hl=en&sa=X&ei=8Ob2VLmSIcvNygOTjoGIBA&ved=0CCIQ6AEwAA#v=onepage&q=manifold%20%22rubber-sheet%22&f=false}{online}) \item [[Ashok Das]], \emph{Lectures on Gravitation}, WorldScientific 2011 (\href{http://www.worldscientific.com/worldscibooks/10.1142/7990}{publisher}, \href{https://books.google.de/books?id=oupB7VUGzGcC&pg=PA69&lpg=PA69&dq=manifold+"rubber-sheet"&source=bl&ots=ajbiJu7T_m&sig=MPsA2KWds_Mmf_UCscieaGVJzJk&hl=en&sa=X&ei=8Ob2VLmSIcvNygOTjoGIBA&ved=0CCUQ6AEwAQ#v=onepage&q=manifold%20%22rubber-sheet%22&f=false}{GoogleBooks}) \end{itemize} [[!redirects elasticity theory]] [[!redirects rubber-sheet geometry]] [[!redirects rubber-sheet analogy of gravity]] [[!redirects elastic]] \end{document}