\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{electric-magnetic duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{langlands_correspondence}{}\paragraph*{{Langlands correspondence}}\label{langlands_correspondence} [[!include Langlands correspondence -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{description}{Description}\dotfill \pageref*{description} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Electric-magnetic duality is a lift of [[Hodge star operator|Hodge duality]] from [[de Rham cohomology]] to [[ordinary differential cohomology]]. \hypertarget{description}{}\subsection*{{Description}}\label{description} Consider a [[circle n-bundle with connection]] $\nabla$ on a space $X$. Its [[higher parallel transport]] is the [[action functional]] for the [[sigma-model]] of $(n-1)$-dimensional objects ($(n-1)$-branes) propagating in $X$. For $n = 1$ this is the coupling of the [[electromagnetic field]] to particles. For $n = 2$ this is the coupling of the [[Kalb-Ramond field]] to strings. The [[curvature]] $F_\nabla \in \Omega^{n+1}(X)$ is a closed $(n+1)$-form. The condition that its image $\star F_\nabla$ under the [[Hodge star operator]] is itself closed \begin{displaymath} d_{dR} \star F_\nabla = 0 \end{displaymath} is the [[Euler-Lagrange equation]] for the standard (abelian [[Yang-Mills theory]]-[[action functional]] on the space of circle n-bundle with connection. If this is the case, it makes sense to ask if $\star F_\nabla$ itself is the curvature $(d-(n+1))$-form of a circle $(d-(n+1)-1)$-bundle with connection $\tilde \nabla$, where $d = dim X$ is the [[dimension]] of $X$. If such $\tilde \nabla$ exists, its [[higher parallel transport]] is the gauge interaction [[action functional]] for $(d-n-3)$-dimensional objects propagating on $X$. In the special case of ordinary [[electromagnetism]] with $n=1$ and $d = 4$ we have that electrically charged 0-dimensional particles couple to $\nabla$ and magnetically charged $(4-(1+1)-2) = 0$-dimensional particles couple to $\tilde \nabla$. In analogy to this case one calls generally the $d-n-3$-dimensional objects coupling to $\tilde \nabla$ the \textbf{magnetic duals} of the $(n-1)$-dimensional objects coupling to $\nabla$. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} For $d= 4$ EM-duality is the special abelian case of [[S-duality]] for [[Yang-Mills theory]]. Witten and Kapustin argued that this is governed by the [[geometric Langlands correspondence]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[N=2 D=4 super Yang-Mills theory]] electric-magnetic duality is studied as \emph{[[Seiberg-Witten theory]]}. \item In [[heterotic string theory]] one considers 1-dimensional objects in $d=10$-dimensional spaces electrically charged (under the [[Kalb-Ramond field]]). Their magnetic duals are 5-dimensional objects (fivebranes), studied in [[dual heterotic string theory]]. \item [[!include electric-magnetic duality -- table]] \item [[M2-brane]] and [[M5-brane]]: the 4-form $G_4$ which the M2-brane couples to is the Hodge-dual of the 7-form $G_7$ which the M5-brane couples to \end{itemize} \begin{displaymath} G_7 = \star G_4 \end{displaymath} as imposed by the equations of motion for 11d [[supergravity]] (see \href{https://ncatlab.org/nlab/show/torsion+constraints+in+supergravity#Examples11dSuGra}{here}). The associated [[C3-field]] and [[C6-field]] are electric-magnetic duals. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[duality in physics]], [[duality in string theory]] \begin{itemize}% \item [[parent action functional]] \item [[S-duality]] \begin{itemize}% \item \textbf{electro-magnetic duality} \begin{itemize}% \item [[Montonen-Olive duality]] \item [[dual graviton]] \item [[dual photon]] \end{itemize} \item [[Seiberg duality]] \item [[geometric Langlands correspondence]] \item [[quantum geometric Langlands correspondence]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Detailed review is in \begin{itemize}% \item [[José Figueroa-O'Farrill]], \emph{Electromagnetic Duality for Children} (1998) ([[FigueroaElectromagneticDuality.pdf:file]]) \end{itemize} It was originally noticed in \begin{itemize}% \item P. Goddard, J. Nuyts, and [[David Olive]], \emph{Gauge Theories And Magnetic Charge}, Nucl. Phys. B125 (1977) 1-28. \end{itemize} that where [[electric charge]] in [[Yang-Mills theory]] takes values in the [[weight lattice]] of the [[gauge group]], then [[magnetic charge]] takes values in the lattice of what is now called the [[Langlands dual group]]. This led to the electric/magnetic duality conjecture formulation in \begin{itemize}% \item [[Claus Montonen]], [[David Olive]], \emph{Magnetic Monopoles As Gauge Particles?} Phys. Lett. B72 (1977) 117-120. \end{itemize} According to (\hyperlink{KapustinWitten06}{Kapustin-Witten 06, pages 3-4}) the observation that the Montonen-Olive dual charge group coincides with the [[Langlands dual group]] is due to \begin{itemize}% \item [[Michael Atiyah]], private communication to [[Edward Witten]], 1977 \end{itemize} See also the references at \emph{[[S-duality]]}. The insight that the Montonen-Olive duality works more naturally in [[super Yang-Mills theory]] is due to \begin{itemize}% \item [[David Olive]], [[Edward Witten]], \emph{Supersymmetry Algebras That Include Topological Charges}, Phys. Lett. B78 (1978) 97-101. \end{itemize} and that it works particularly for [[N=4 D=4 super Yang-Mills theory]] is due to \begin{itemize}% \item H. Osborn, \emph{Topological Charges For $N = 4$ Supersymmetric Gauge Theories And Monopoles Of Spin 1}, Phys. Lett. B83 (1979) 321-326. \end{itemize} The observation that the $\mathbb{Z}_2$ electric/magnetic duality extends to an $SL(2,\mathbb{Z})$-action in this case is due to \begin{itemize}% \item [[John Cardy]], E. Rabinovici, \emph{Phase Structure Of Zp Models In The Presence Of A Theta Parameter}, Nucl. Phys. B205 (1982) 1-16; \item [[John Cardy]], \emph{Duality And The Theta Parameter In Abelian Lattice Models}, Nucl. Phys. B205 (1982) 17-26. \item A. Shapere and [[Frank Wilczek]], \emph{Selfdual Models With Theta Terms}, Nucl. Phys. B320 (1989) 669-695. \end{itemize} and specifically the embedding of this into [[string theory]] [[S-duality]] originates in \begin{itemize}% \item [[Ashoke Sen]], \emph{Dyon - Monopole Bound States, Self-Dual Harmonic Forms on the Multi-Monopole Moduli Space, and $SL(2,\mathbb{Z})$ Invariance in String Theory} (\href{http://arxiv.org/abs/hep-th/9402032}{arXiv:hep-th/9402032}) \end{itemize} The understanding of this $SL(2,\mathbb{Z})$-symmetry as a remnant conformal transformation on a 6-dimensional [[principal 2-bundle]]-theory -- the [[6d (2,0)-superconformal QFT]] -- compactified on a torus is described in \begin{itemize}% \item [[Edward Witten]], pages 4-5 of \emph{Some Comments On String Dynamics}, Proceedings of \emph{String95} (\href{http://arxiv.org/abs/hepth/9507121}{arXiv:hepth/9507121}) \item [[Edward Witten]], \emph{On S-Duality in Abelian Gauge Theory} (\href{http://arxiv.org/abs/hep-th/9505186}{arXiv:hep-th/9505186}) \item [[Cumrun Vafa]], \emph{Geometric Origin of Montonen-Olive Duality}, Adv.Theor.Math.Phys.1:158-166, 1998 (\href{https://arxiv.org/abs/hep-th/9707131}{arXiv:hep-th/9707131}) \item [[Edward Witten]], \emph{[[Conformal field theory in four and six dimensions]]}, in [[Ulrike Tillmann]], \emph{Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal}, London Mathematical Society Lecture Note Series (2004) (\href{http://arxiv.org/abs/0712.0157}{arXiv:0712.0157}) \end{itemize} The relation of S-duality to [[geometric Langlands duality]] was understood in \begin{itemize}% \item [[Anton Kapustin]], [[Edward Witten]], \emph{Electric-Magnetic Duality And The Geometric Langlands Program} , Communications in number theory and physics, Volume 1, Number 1, 1--236 (2007) (\href{http://arxiv.org/abs/hep-th/0604151}{arXiv:hep-th/0604151}) \end{itemize} Exposition of this is in \begin{itemize}% \item [[Edward Frenkel]], \emph{What Do Fermat's Last Theorem and Electro-magnetic Duality Have in Common?} KITP talk 2011 (\href{http://online.kitp.ucsb.edu/online/bblunch/frenkel/}{web}) \end{itemize} A perspective unifying EM-duality of [[higher gauge theories]] with [[non-abelian T-duality]]: \begin{itemize}% \item [[Ján Pulmann]], [[Pavol Ševera]], [[Fridrich Valach]], \emph{A non-abelian duality for (higher) gauge theories} (\href{https://arxiv.org/abs/1909.06151}{arXiv:1909.06151}) \end{itemize} [[!redirects electric-magnetic dualities]] [[!redirects electro-magnetic duality]] [[!redirects electro-magnetic dualities]] [[!redirects electromagnetic duality]] [[!redirects electromagnetic dualites]] \end{document}