\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{elegant Reedy category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{degeneracies_are_split}{Degeneracies are split}\dotfill \pageref*{degeneracies_are_split} \linebreak \noindent\hyperlink{degeneracies_in_subobjects}{Degeneracies in subobjects}\dotfill \pageref*{degeneracies_in_subobjects} \linebreak \noindent\hyperlink{all_presheaves_are_reedy_monomorphic}{All presheaves are ``Reedy monomorphic''}\dotfill \pageref*{all_presheaves_are_reedy_monomorphic} \linebreak \noindent\hyperlink{reedy__injective}{Reedy = injective}\dotfill \pageref*{reedy__injective} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An \textbf{elegant Reedy category} is a [[Reedy category]] $R$ such that the following \emph{equivalent} conditions hold \begin{itemize}% \item For every [[monomorphism]] $A\hookrightarrow B$ of [[presheaves]] on $R$ and every $x\in R$, the induced map $A_x \amalg_{L_x A} L_x B \to B_x$ is a monomorphism. \item Every [[span]] of codegeneracy maps in $R_-$ has an [[absolute colimit|absolute]] [[pushout]] in $R_-$. \item Every element of a presheaf $R$ is a degeneracy of some nondegenerate element in a unique way. \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The principal theorem about elegant Reedy categories is that the [[Reedy model structure]] on [[presheaves]] (i.e. contravariant diagrams) over an elegant Reedy category coincides with the [[injective model structure]]. This is not true for presheaves valued in \emph{any} model category, only well-behaved ones. We clarify the necessary conditions by building up to this theorem in stages, adding hypotheses on the codomain of the presheaves as necessary. \hypertarget{degeneracies_are_split}{}\subsubsection*{{Degeneracies are split}}\label{degeneracies_are_split} \begin{lemma} \label{DegSplit}\hypertarget{DegSplit}{} If $R$ is elegant, then every codegeneracy map (i.e. morphism in $R_-$) is a [[split epimorphism]]. \end{lemma} \begin{proof} Let $f:x\to y$ be a codegeneracy map; then the span $y \xleftarrow{f} x \xrightarrow{f} y$ has an absolute pushout, consisting of say $g:y\to z$ and $h:y\to z$ with $g f = h f$. This absolute pushout is preserved by $R(z,-)$, so $1_z\in R(z,z)$ must be the image under $g$ or $h$ of some map $s:z\to y$; WLOG say it is $g$, so we have $1_z = g s$. Now we have $s h:y\to y$ and $1_y$ such that $g s h = h = h 1_y$, and our absolute pushout is preserved by $R(y,-)$, so there must be a zigzag of elements in $R(y,z)$ relating $s h$ to $1_y$. At one end of that zigzag, there must be a $t:y\to x$ such that $f t = 1_y$; hence $f$ is split epi. \end{proof} \begin{lemma} \label{MonoPreservesDeg}\hypertarget{MonoPreservesDeg}{} For every monomorphism $A\hookrightarrow B$ of presheaves on $R$, every nondegenerate element of $A$ remains nondegenerate in $B$. \end{lemma} \begin{proof} Let $a$ be a nondegenerate element of $A_x$, for some $x\in R$, $f : x \to y$ a codegeneracy map, and $b\in B_y$ such that $B_f b = a$. We have to show that $f = \id$. By Lemma \ref{DegSplit}, $f$ has a section $s: y \to x$, hence $B_s a = B_s B_f b = b$, which implies that $b \in A_y$. Since $a$ is nondegenerate, it follows that $f = \id$. \end{proof} \hypertarget{degeneracies_in_subobjects}{}\subsubsection*{{Degeneracies in subobjects}}\label{degeneracies_in_subobjects} \begin{lemma} \label{DegSub}\hypertarget{DegSub}{} Let $R$ be elegant and $f:x\to y$ a codegeneracy in $R$. Let $M$ be any category, and $\mu:A\to B$ a monomorphism in $M^{R^{\mathrm{op}}}$. Then the following naturality square is a pullback: \begin{displaymath} \itexarray{ A_y & \xrightarrow{A_f} & A_x \\ {}^{\mu_y}\downarrow & & \downarrow^{\mu_x} \\ B_y & \xrightarrow{B_f} & B_x } \end{displaymath} \end{lemma} \begin{proof} This depends only on the fact that $f$ is split epi in $R$. Let $s:y\to x$ be a section of it, and let $P$ be the pullback of $B_f$ and $\mu_x$, with projections $p:P\to A_x$ and $q:P\to B_y$ with $\mu_x p = B_f q$, and an induced map $\phi:A_y \to P$ such that $p \phi = A_f$ and $q\phi = \mu_y$. We claim that $A_s p : P \to A_y$ is an inverse of $\phi$, making it an isomorphism. On the one hand we have $A_s p \phi = A_s A_f = A_{f s} = 1$. On the other, to show that $\phi A_s p = 1$ it suffices to show that $p \phi A_s p = p$ and $q \phi A_s p = q$. For the first, since $\mu_x$ is monic, it suffices to show $\mu_x p \phi A_s p = \mu_x p$, and for that we have \begin{displaymath} \mu_x p \phi A_s p = B_f q \phi A_s p = B_f \mu_y A_s p = B_f B_s \mu_x p = B_{f s} \mu_x p = \mu_x p. \end{displaymath} And for the second, we have \begin{displaymath} q \phi A_s p = \mu_y A_s p = B_s \mu_x p = B_s B_f q = B_{f s} q = q. \end{displaymath} \end{proof} \begin{lemma} \label{LatchSub}\hypertarget{LatchSub}{} Let $R$ be elegant, $M$ a category with pullback-stable colimits, and $\mu:A\to B$ a monomorphism in $M^{R^{\mathrm{op}}}$. Then for any object $x\in R$, the following square is a pullback, where $L_x$ denotes the Reedy latching object at $x$: \begin{displaymath} \itexarray{ L_x A & \to & A_x \\ {}^{L_x \mu}\downarrow & & \downarrow^{\mu_x} \\ L_x B & \to & B_x. } \end{displaymath} \end{lemma} \begin{proof} The map $L_x B \to B_x$ is by definition the colimit in $M/B_x$ of a diagram whose objects are morphisms of the form $B_f : B_y \to B_x$, for $f$ a codegeneracy. By the Lemma \ref{DegSub}, each of these pulls back along $\mu_x$ to $A_f : A_y \to A_x$, forming the corresponding diagram whose colimit is $L_x A \to A_x$, and by assumption the pullback preserves the colimit. \end{proof} \hypertarget{all_presheaves_are_reedy_monomorphic}{}\subsubsection*{{All presheaves are ``Reedy monomorphic''}}\label{all_presheaves_are_reedy_monomorphic} \begin{lemma} \label{ReedyCofibrant}\hypertarget{ReedyCofibrant}{} Let $R$ be elegant and let $M$ be an [[infinitary-coherent category]]. Then for any $x\in R$ and $A\in M^{R^{\mathrm{op}}}$, the map $L_x A \to A_x$ is a monomorphism. \end{lemma} \begin{proof} We use the terminology from the page [[∞-ary exact category]]. Consider the [[sink]] with target $A_x$ consisting of all morphisms $A_f : A_y \to A_x$ indexed by nonidentity codegeneracies $f$ with domain $x$. By assumption, for any two such $f:x\to y$ and $f':x\to y'$ there is an absolute pushout $g:y\to z$ and $g':y'\to z$. By absoluteness, $A_z$ is the pullback $A_y \times_{A_x} A_y$. Thus, the images of these absolute pushouts form the \emph{kernel} of this sink. Now $L_x A$ is the colimit of the diagram whose objects are $A_y$ indexed by such $f:x\to y$ and whose morphisms are $A_g: A_{y'} \to A_{y}$ for $g:y\to y'$ a codegeneracy with $g f = f'$. In this case, by the universal property of pullback, we have a unique map from $A_{y'}$ to $A_z$, where $z$ is the absolute pushout of $f$ and $f'$. Thus, a cocone under the above kernel is also a cocone under this diagram, and the converse is easy to see. Hence, $L_x A$ is the quotient of the above kernel. However, in any infinitary-regular category, the quotient of the kernel of a sink is exactly the extremal-epic / monic factorization of that sink. Therefore, the induced map $L_x A \to A_x$ is monic. \end{proof} \hypertarget{reedy__injective}{}\subsubsection*{{Reedy = injective}}\label{reedy__injective} \begin{theorem} \label{RelativeLatching}\hypertarget{RelativeLatching}{} If $R$ is elegant and $M$ is a [[Grothendieck topos]], then for any $x\in R$ and monomorphism $\mu:A\to B$ in $M^{R^{\mathrm{op}}}$, the induced map $L_x B \sqcup_{L_x A} A_x \to B_x$ is monic. \end{theorem} \begin{proof} Since Grothendieck toposes are infinitary-coherent, by Lemma \ref{ReedyCofibrant} $L_x B\to B_x$ is monic. By assumption $A_x \to B_x$ is monic. And since Grothendieck toposes have pullback-stable colimits, by Lemma \ref{LatchSub} the square \begin{displaymath} \itexarray{ L_x A & \to & A_x \\ {}^{L_x \mu}\downarrow & & \downarrow^{\mu_x} \\ L_x B & \to & B_x. } \end{displaymath} is a pullback. In other words, $L_x A$ is the [[intersection]] of the subobjects $L_x B$ and $A_x$ of $B_x$. But in any [[coherent category]], the pushout of two subobjects over their intersection is their [[union]], and hence in particular a subobject of their common codomain. \end{proof} \begin{ucor} If $R$ is elegant and $M$ is a [[Cisinski model category]], then the [[Reedy model structure]] on $M^{R^{\mathrm{op}}}$ coincides with the [[injective model structure]]. \end{ucor} \begin{proof} By definition, they have the same [[weak equivalences]], so it suffices to show that their classes of cofibrations coincide. But every Reedy cofibration in any Reedy model structure is an injective (i.e. objectwise) cofibration, and the converse is Theorem \ref{RelativeLatching}. \end{proof} The most common application is when $M = SSet$. Thus, for instance, every simplicial presheaf on an elegant Reedy category is Reedy cofibrant. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[simplex category]] $\Delta$ is an elegant Reedy category. \item Joyal's [[Theta category|disk categories]] $\Theta_n$ are elegant Reedy categories. \item Every [[direct category]] is a Reedy category with no degeneracies, hence trivially an elegant one. \item If $X$ is any presheaf on an elegant Reedy category $R$, then the opposite of its [[category of elements]] $(el X)^{op}$ is again an elegant Reedy category. This is fairly easy to see from the fact that $Set^{el X}$ is equivalent to the slice category $Set^{R^{op}}/X$. \item Every [[EZ-Reedy category]] is elegant. \end{itemize} Note that unlike the notion of [[Reedy category]], the notion of elegant Reedy category is not self-dual: if $R$ is elegant then $R^{op}$ will not generally be elegant. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[generalized Reedy category]] \item [[Reedy model structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Julie Bergner]] and [[Charles Rezk]], \emph{Reedy categories and the $\Theta$-construction}, \href{http://arxiv.org/abs/1110.1066}{arXiv:1110.1066} \end{itemize} Elegant Reedy categories are useful to model [[homotopy type theory]]. \begin{itemize}% \item [[Mike Shulman]], \emph{The univalence axiom for elegant Reedy presheaves} (\href{http://arxiv.org/abs/1307.6248}{arXiv:1307.6248}) \item [[Michael Shulman]], \emph{Univalence for inverse diagrams and homotopy canonicity}, Mathematical Structures in Computer Science, Volume 25, Issue 5 ( \emph{From type theory and homotopy theory to Univalent Foundations of Mathematics} ) June 2015 (\href{https://arxiv.org/abs/1203.3253}{arXiv:1203.3253}, \href{https://doi.org/10.1017/S0960129514000565}{doi:/10.1017/S0960129514000565}) \item Benno van den Berg and Ieke Moerdijk, \emph{W-types in homotopy type theory}, \href{http://www.staff.science.uu.nl/~berg0002/papers/WinHoTT.pdf}{PDF} \end{itemize} [[!redirects elegant Reedy categories]] \end{document}