\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{elimination of quantifiers} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{semantic_characterizations_of_qe}{Semantic characterizations of QE}\dotfill \pageref*{semantic_characterizations_of_qe} \linebreak \noindent\hyperlink{qe_extends_to_coslice_categories}{QE extends to co-slice categories}\dotfill \pageref*{qe_extends_to_coslice_categories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One thinks of [[existential quantifier | existential quantification]] as \emph{[[projection]]}. A theory eliminates quantifiers when ``the projection of a primitive (quantifier-free) definable set is still primitive (quantifier-free).'' For example, suppose we're working in the theory of a [[vector space]] over a fixed field $\mathbb{F}$. Let $A$ be a linear transformation $\mathbb{F}^{n+1} \to \mathbb{F}^m$. Let $\vec{b}$ be an $m$-tuple, $x$ a variable, and $\vec{y}$ an $n$-tuple of variables. Then the solution set for \begin{displaymath} \exists x A(x, \vec{y}) = \vec{b} \end{displaymath} is the projection of the solution set for \begin{displaymath} A(x, \vec{y}) = \vec{b} \end{displaymath} to the $\vec{y}$-hyperplane. Since the projection of a (translated) hyperplane is again a (translated) hyperplane, there exists some $B : \mathbb{F}^n \to \mathbb{F}^m$ such that $B(\vec{y}) = \vec{b} \iff (\exists x) \left(A(x, \vec{y}) = \vec{b}\right).$ This is an instance of the fact that the theories of [[vector space | vector spaces]] over division rings admits quantifier elimination. It's nice when this happens, and when it doesn't, one asks for minimal ways to expand the language to make it happen. That [[ACF]] eliminates quantifiers is a special case of [[Chevalley's theorem on constructible sets]] (``the image of a constructible set is constructible''). Often, in order to prove quantifier-elimination, one develops an \emph{effective} procedure for reducing an arbitrary sentence to a quantifier-free one, which shows that the theory is [[decidability|decidable]]; this is how Tarski proved that the theory [[RCF]] of real closed fields is decidable. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An $\mathcal{L}$-theory $T$ \textbf{eliminates quantifiers} if every $\mathcal{L}$-formula $\varphi(x)$ is equivalent to a quantifier-free $\mathcal{L}$-formula $\psi(x)$, i.e. \begin{displaymath} T \models \varphi(x) \leftrightarrow \psi(x). \end{displaymath} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item Any theory is [[interpretation|bi-interpretable]] with an expanded theory where every definable set is named with a predicate, called its [[coherent logic|Morleyization]], which eliminates quantifiers. \item Therefore, whether or not a structure has quantifier elimination depends on the language being used to describe the structure. \item Quantifier elimination implies [[model complete theory | model completeness]]: all submodels are elementary submodels and all models are [[existentially closed theory | existentially closed]]. \item It is an informative exercise to try to prove QE syntactically (a ``tractable'' case like [[DLO]] suffices) to appreciate the usefulness of the semantic/model-theoretic characterization of QE below. \item The characterizations below (and in general important tools in model theory like the [[compactness theorem]], the [[Lowenheim-Skolem theorem]], etc.) only work for \emph{infinite} models. \item Since quantifier elimination is equivalent to [[substructure complete theory\#substructureconverse|substructure completeness]] and [[elementary equivalence|elementarily equivalent]] finite structures are isomorphic, (the theory of a) finite [[first-order structure]] eliminates quantifiers if and only if it is [[Fraisse limit|ultrahomogeneous]]. \end{itemize} \hypertarget{semantic_characterizations_of_qe}{}\subsection*{{Semantic characterizations of QE}}\label{semantic_characterizations_of_qe} \begin{prop} \label{}\hypertarget{}{} A first-order theory $T$ eliminates quantifiers if and only if it is substructure-complete: $T$ plus the [[quantifier-free diagram]] of any substructure of any model of $T$ form a complete theory. \end{prop} \begin{proof} See [[substructure complete theory\#QEiffsubstructurecomplete|substructure completeness]]. \end{proof} \begin{theorem} \label{QEcriterion}\hypertarget{QEcriterion}{} Let $T$ be a theory. The following are equivalent: \begin{enumerate}% \item $T$ eliminates quantifiers. \item For every $M$ and $N$ models of $T$ such that $N$ is $|M|^+$-[[type (in model theory)|saturated]] and every proper substructure $A \subseteq M$ such that there is an embedding $i \colon A \to N$, there exists a proper intermediate substructure $A'$, $A \subsetneq A' \subseteq M$ and an extension $i' \colon A' \to N$ of $i$ to $A'$. \end{enumerate} \end{theorem} \begin{proof} (1. $\implies$ 2.) Suppose $T$ eliminates quantifiers. Since this is equivalent to [[substructure-completeness]], choose $x \in M \backslash A$, and let $B \overset{df}{=} \langle A \cup \{x\} \rangle$ be the substructure of $M$ generated by $A \cup \{x\}.$ Then, since quantifier-free statements are transferred by embeddings, the [[type (in model theory)]] of $x$ over $A$ in $M$ is finitely realized in $N$ and therefore realized via $|M|^+$-saturation by some $x'$. A standard [[back-and-forth argument]] starting at $x'$ lets us build our required extension. (2. $\implies$ 1.) By possibly transfinitely iterating 2., we obtain an embedding $M \to N.$ As we can always embed a $T$-model inside a larger, arbitrarily saturated $T$-model, we therefore have [[model completeness|amalgamation]]. This gives [[model completeness]]: since model completeness is equivalent to every $T$-submodel being an [[elementary embedding|elementary submodel]], it suffices by the Tarski-Vaught test (and an induction on complexity of formulas) to test that whenever $m$ is a tuple from $M$, $\varphi(x,y)$ is a quantifier-free formula, and $N \models \exists x \varphi(x, m)$, then $M \models \exists x \varphi(x,m)$ (i.e. that $M$ is [[existentially closed]].) Embed $M$ into a sufficiently saturated elementary extension $^*M$ (by taking a large enough [[ultrapower]], if you like). Then by (2.), the elementary embedding $M \preceq ^*M$ extends along the embedding $M \hookrightarrow N$ to an embedding $N \hookrightarrow ^*M$. If $N \models \exists x \varphi(x,m)$, then there is a witness $n \in N$ such that $N \models \varphi(n,m)$. Since $\varphi$ was quantifier-free, this transfers along the embedding $N \hookrightarrow ^*M$, so that $^*M \models \varphi(n,m)$, and therefore $^*M \models \exists x \varphi(x,m).$ This then transfers down the elementary embedding $M \preceq ^*M$, so $M \models \exists x \varphi(x,m).$ Since $M$ and $N$ were arbitrary, $T$ is model complete. Since [[model completeness\#substructureconverse|model completeness + amalgamation implies substructure completeness]] and [[substructure complete theory\#QEiffsubstructurecomplete|substructure completeness is equivalent to quantifier elimination]], the theorem is proved. \end{proof} \begin{cor} \label{}\hypertarget{}{} [[ACF]] admits quantifier elimination. Furthermore, the theories $\mathsf{ACF}_p$ (where $p$ is specification of the characteristic) are complete. \end{cor} \begin{proof} We put ourselves into the situation of the above theorem. Let $E$ and $F$ be algebraically closed fields such that $F$ is $|E|^+$-saturated. Let $R$ be a subring of $E$ with $i : R \to F$ an embedding. As $E$ is a field, $R$ is an integral domain, and thus $E$ contains the fraction field $\operatorname{Frac}(R)$ of $R$. The embedding $i$ extends uniquely to $\operatorname{Frac}(R)$. By a back-and-forth argument, $i$ extends uniquely to $\operatorname{Frac}(R)^{\operatorname{alg}}$. Therefore, we can assume that $R$ is algebraically closed. Let $a \in E \backslash R$. Then $a$ is transcendental over $R$, and by saturation its [[type (in model theory) | type]] is realized by some $b \in F$ which is transcendental over the image $i(R)$ of $R$ under $i$. Then $a \mapsto b$ induces an embedding $R[a] \overset{i'}{\to} i(R)[b]$, which extends $i$. Thus the hypotheses of the theorem are satisfied and [[ACF]] admits QE. That $\mathsf{ACF}$ becomes complete after specifying a characteristic follows from the fact that in any theory with quantifier elimination, naming a substructure (thus passing to the theory of all models which contain a copy of that substructure) makes the theory complete, and every field of characteristic $p$ contains the prime field of characteristic $p$. \end{proof} \hypertarget{qe_extends_to_coslice_categories}{}\subsection*{{QE extends to co-slice categories}}\label{qe_extends_to_coslice_categories} Let $T$ eliminate quantifiers. Let $K$ be a substructure (not necessarily a submodel) of some model $A$ of $T$. Then the theory $T/K$ of models of $T$ interpreting a copy of $K$ also has quantifier elimination. In particular, if we specialize to [[ACF]], this tells us that not only do all algebraically closed fields admit quantifier elimination in the language of rings, but so do all algebraically closed fields containing a fixed ring $R$ (i.e. the geometric points of $\operatorname{Spec}(R)$), in the language of rings with constants for the elements of $R$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quantification]] \item [[quantifier-free diagram]] \item [[decidability]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{http://en.wikipedia.org/wiki/Quantifier_elimination}{quantifier elimination} \item Wilfrid Hodges, \emph{Model Theory}, Cambridge University Press 1993 \end{itemize} category: logic, model theory [[!redirects quantifier elimination]] [[!redirects quantifier-elimination]] \end{document}