\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{elliptic cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{elliptic_cohomology}{}\paragraph*{{Elliptic cohomology}}\label{elliptic_cohomology} [[!include elliptic cohomology -- contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{genera_the_elliptic_genus_and_relation_to_string_theory}{Genera, the elliptic genus and relation to string theory}\dotfill \pageref*{genera_the_elliptic_genus_and_relation_to_string_theory} \linebreak \noindent\hyperlink{equivariant_elliptic_cohomology_and_loop_group_representations}{Equivariant elliptic cohomology and loop group representations}\dotfill \pageref*{equivariant_elliptic_cohomology_and_loop_group_representations} \linebreak \noindent\hyperlink{chromatic_filtration}{Chromatic filtration}\dotfill \pageref*{chromatic_filtration} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_quantum_field_theory}{Relation to quantum field theory}\dotfill \pageref*{relation_to_quantum_field_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{elliptic cohomology theory} is a type of \emph{[[generalized (Eilenberg-Steenrod) cohomology]]} theory associated with the datum of an [[elliptic curve]]. Even ([[weakly periodic cohomology theory|weakly]]) [[periodic cohomology theory|periodic]] [[multiplicative cohomology theory|multiplicative]] [[generalized (Eilenberg-Steenrod) cohomology]] theories $A$ are characterized by the [[formal group]] whose ring of functions $A(\mathbb{C}P^\infty)$ is the [[cohomology ring]] of $A$ evaluated on the complex projective space $\mathbb{C}P^\infty$ and whose group product is induced from the canonical morphism $\mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$ that describes the tensor product of complex [[line bundle]]s under the identification $\mathbb{C}P^\infty \simeq \mathcal{B} U(1)$. There are precisely three types of such formal group laws: \begin{itemize}% \item the simple additive group structure -- this corresponds to standard integral cohomology given by the [[Eilenberg-MacLane spectrum]]; \item the multiplicative group that corresponds to complex [[K-theory]] \item the formal group law on [[elliptic curve]]. \end{itemize} An \textbf{elliptic cohomology} theory is an even [[periodic cohomology theory|periodic]] [[multiplicative cohomology theory|multiplicative]] [[generalized (Eilenberg-Steenrod) cohomology]] theory whose corresponding formal group is an elliptic curve, hence which is [[Brown representability theorem|represented]] by an [[elliptic spectrum]]. e.g. \hyperlink{Lurie}{Lurie, def. 1.2}, see also at \emph{[[elliptic spectrum]]} Then [[Goerss-Hopkins-Miller-Lurie theorem]] shows that the assignment of [[generalized (Eilenberg-Steenrod) cohomology]] theories to [[elliptic curves]] lifts to an assignment of representing [[spectrum|spectra]] in a structure preserving way. The [[homotopy limit]] of this assignment functor, i.e. the ``gluing'' of all spectra representing all elliptic cohomology theories is the [[spectrum]] that represents the cohomology theory called [[tmf]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{genera_the_elliptic_genus_and_relation_to_string_theory}{}\subsubsection*{{Genera, the elliptic genus and relation to string theory}}\label{genera_the_elliptic_genus_and_relation_to_string_theory} \begin{quote}% A properly developed theory of elliptic cohomology is likely to shed some light on what [[string theory]] really means. (\hyperlink{Witten87}{Witten 87, very last sentence}) \end{quote} The following is \textbf{rough material} originating from notes taken live (and long ago), to be polished. See also at \emph{[[elliptic genus]]} and \emph{[[Witten genus]]} Some topological invariants of [[manifolds]] that are of interest: we restricted attention to [[closed manifold|closed]] connected [[smooth manifolds]] $X$ \begin{itemize}% \item the [[Euler characteristic]] $e(X) \in \mathbb{Z}$ \begin{itemize}% \item takes all values in $\mathbb{Z}$ \item is the obstruction to the existence of a nowhere vanishing [[vector field]] on $X$: \begin{displaymath} (e(X)= 0) \Leftrightarrow (\exists v \in \Gamma(T X) : \forall x \in X : v(x) \neq 0) \end{displaymath} \end{itemize} \item [[signature]] $sgn(X)$ this is the obstruction to $X$ being cobordant to a fiber bundle over the circle: $X$ is [[bordant manifold|bordant]] to a [[fiber bundle]] over $S^1$ precisely if $sgn(X) = 0$ \item when $X$ has a [[spin structure]] the index of the [[Dirac operator]] $D$: \begin{displaymath} ind D_X \in \mathbb{Z} \end{displaymath} \begin{displaymath} \alpha(D) \in \left\{ \itexarray{ \mathbb{Z} & dim X = 0 mod 4 \\ \mathbb{Z}_2 & dim X = 1, 2 mod 8 \\ 0 & otherwise } \right. \end{displaymath} \textbf{theorem} (Gromov-Lawson / [[Stephan Stolz|Stolz]]) let $dim X \geq 5$ and then $X$ admits a [[Riemannian metric]] of positive [[scalar curvature]] precisely when $\alpha(X) = 0$ \end{itemize} These invariants share the following properties: \begin{itemize}% \item they are additive under [[disjoint union]] of [[manifold]]s \item they are multiplicative under [[cartesian product]] of manifolds \item $e(X) mod 2, sgn(X), ind(D_X)$ all vanish when $X$ is a boundary, $\exists W : X = \partial W$, which means that $X$ is [[cobordant manifold|cobordant]] to the empty manifold $\emptyset$. in other words, these invariants are [[genus|genera]], namely [[ring]] homomorphisms \begin{displaymath} \Omega \to R \end{displaymath} form the [[cobordism ring]] $\Omega$ to some commutative [[ring]] $R$ \item good [[genus|genera]] are those which reflect geometric properties of $X$. \item now for $X$ a [[topological space]] consider the [[cobordism ring]] \emph{over $X$}: \begin{displaymath} \Omega(X) := \{(M,f)| f : M \stackrel{cont}{\to X}\}/_{bordism} \end{displaymath} where addition and multiplication are again given by disjoint union and cartesian product. this assignment of rings to topological spaces is a [[generalized homology]] theory: [[cobordism homology theory]] \textbf{question} given a [[genus]] $\Omega \to R$, can we find a [[homology theory]] $R(-)$ with $R = R(pt)$ its [[homology ring]] over the point and such that it all fits into a natural diagram \begin{displaymath} \itexarray{ \Omega &\to& R \\ \uparrow && \uparrow \\ \Omega(X) &\stackrel{\rho}{\to}& R(X) } \end{displaymath} This would be a \emph{parameterized extension} $\rho = R(-)$ of $R$ . Now let $X$ be a closed manifold. consider $u_X : X \to K(\pi_1(X),1)$ (on the right an [[Eilenberg-MacLane space]]) which is the classifying map for the [[universal cover]] \begin{displaymath} u_* \pi_1(X) \stackrel{\simeq_{canon}}{\to} \pi_1(K(\pi_1(X), 1)) \end{displaymath} then consider \begin{displaymath} \rho_X[X, u_X] \in R(K(\pi_1(X),1)) \end{displaymath} \textbf{theorem (Julia Weber)} take the [[Euler characteristic]] mod 2, $Eu(X)$ \begin{displaymath} \itexarray{ \Omega^0 &\stackrel{Eu(M)\cdot t^{dim M}}{\to}& \mathbb{Z}_2[t] \\ \uparrow && \uparrow \\ \Omega^0(X) &\to& Eu(X) & \simeq H_\bullet(X; \mathbb{Z}_2[t]) } \end{displaymath} for $X$ smooth we have then: \begin{displaymath} Eu_X[X, id] = Poincare dual of total Stiefel-Whitney class \end{displaymath} \textbf{theorem} (Minalta) something analogous for [[signature genus]] \begin{displaymath} \itexarray{ \Omega_\bullet^{SO} &\to& Sig_\bullet(X) } \end{displaymath} $sign_X[X,u] \in sig_\bullet(K) \otimes \mathbb{Q}$ this is the Novikov higher signature now the same for the $\alpha$-genus \begin{displaymath} \itexarray{ \Omega_{X}^{Spin} &\stackrel{\alpha}{\to}& KO_\bullet(pt) \\ \uparrow && \uparrow \\ \Omega_\bullet^{Spin} &\to& KO_\bullet(X) } \end{displaymath} \end{itemize} now towards elliptic genera: recall the notion of [[string structure]] of a [[manifold]] $X$: a lift of the structure map $X \to \mathcal{B}O(n)$ through the 4th connected universal cover $\mathcal{B}String(n) := \mathcal{B}O(n)\langle 4\rangle \to \mathcal{B} O$: so consider [[string structure|String manifold]]s and the bordism ring $\Omega_\bullet^{String}$ of String manifold, let $M_\bullet$ be the ring of integral [[modular form]]s, then there is a [[genus]] -- the [[Witten genus]] $W$-- \begin{displaymath} \itexarray{ \Omega_\bullet^{String} &\stackrel{W}{\to}& M_\bullet \\ \uparrow && \uparrow \\ \Omega_\bullet^{String}(X) &\to& M_\bullet(X) \\ &\searrow& \\ && tmf_\bullet(X) } \end{displaymath} where $\Omega_\bullet^{String}(pt) \to tmf_\bullet(pt)$ is surjective \textbf{conjecture ([[Stolz conjecture]])} If a String manifold $Y$ has a positive [[Ricci curvature]] [[Riemannian metric|metric]], then the [[Witten genus]] vanishes. The attempted ``Proof'' of this is the motivation for the [[Stephan Stolz|Stolz]]-[[Peter Teichner|Teichner]]-program for [[geometric models for elliptic cohomology]]: \textbf{``Proof''} If $Y$ is String, then the [[loop space]] $L Y$ is has [[spin structure]], so if $Y$ has positive [[Ricci curvature]] the $L Y$ has positive [[scalar curvature]] which implies by the above that $ind^{S^1} D_{L Y} = 0$ which by the index formula is the [[Witten genus]]. \hypertarget{equivariant_elliptic_cohomology_and_loop_group_representations}{}\subsubsection*{{Equivariant elliptic cohomology and loop group representations}}\label{equivariant_elliptic_cohomology_and_loop_group_representations} The analog of the [[orbit method]] with [[equivariant K-theory]] replaced by [[equivariant elliptic cohomology]] yields (aspects of) the [[representation theory]] of [[loop groups]]. (\hyperlink{Ganter12}{Ganter 12}) \hypertarget{chromatic_filtration}{}\subsubsection*{{Chromatic filtration}}\label{chromatic_filtration} [[!include chromatic tower examples - table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[elliptic spectrum]] \item [[elliptic genus]], [[equivariant elliptic genus]] \item [[SO orientation of elliptic cohomology]], [[spin orientation of elliptic cohomology]] \item [[elliptic Chern character]] \item [[equivariant elliptic cohomology]] \item [[sigma-orientation]] \item [[tmf]] \end{itemize} [[!include moduli of higher lines -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The concept of elliptic cohomology originates around \begin{itemize}% \item [[Peter Landweber]], [[Douglas Ravenel]], [[Robert Stong]], \emph{Periodic cohomology theories defined by elliptic curves}, in [[Haynes Miller]] et. al. (eds.), \emph{The Cech centennial: A conference on homotopy theory}, June 1993, AMS (1995) (\href{http://www.math.sciences.univ-nantes.fr/~hossein/GdT-Elliptique/Landweber-Ravenel-Stong.pdf}{pdf}) \end{itemize} motivated by [[Serge Ochanine]]`s concept of [[elliptic genus]] and by [[Edward Witten]]'s [[QFT]]/[[string theory|string theoretic]] explanation of the [[Ochanine genus]] and of the [[Witten genus]] (as the [[partition functions]] of the [[type II superstring]] and the [[heterotic superstring]], respectively). Accounts include \begin{itemize}% \item [[Charles Thomas]], \emph{Elliptic cohomology}, Kluwer Academic, 2002 \end{itemize} The concept of an [[elliptic spectrum]] [[Brown representability theorem|representing]] an elliptic cohomology theory is due to \begin{itemize}% \item [[Matthew Ando]], [[Michael Hopkins]], [[Neil Strickland]], \emph{Elliptic spectra, the Witten genus, and the theorem of the cube}, Inventiones Mathematicae, 146:595--687, 2001, DOI 10.1007/s002220100175 \end{itemize} Modern accounts of ([[equivariant elliptic cohomology|equivariant]]) elliptic cohomology in terms of [[stable homotopy theory]] include \begin{itemize}% \item [[David Gepner]], \emph{[[Homotopy topoi and equivariant elliptic cohomology]]}, 2005 \item [[Jacob Lurie]], \emph{[[A Survey of Elliptic Cohomology]]} \item [[Jacob Lurie]], \emph{[[Elliptic Cohomology I]]: spectral abelian varieties}, 2018. 141pp (\href{http://math.harvard.edu/~lurie/papers/Elliptic-I.pdf}{pdf}) \item [[Jacob Lurie]], \emph{Elliptic Cohomology II: Orientations}, 2018. 288pp (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf}{pdf}) \item [[Jacob Lurie]], \emph{Elliptic Cohomology III: Tempered Cohomology}, 2019. 286pp (\href{http://www.math.harvard.edu/~lurie/papers/Elliptic-III-Tempered.pdf}{pdf}) \item [[Jacob Lurie]], \emph{Elliptic Cohomology IV: Equivariant elliptic cohomology}, to appear. \end{itemize} Further discussion of [[equivariant elliptic cohomology]] and the relation to [[loop group]] [[representation theory]] is in \begin{itemize}% \item [[Nora Ganter]], \emph{The elliptic Weyl character formula} (\href{http://arxiv.org/abs/1206.0528}{arXiv:1206.0528}) \end{itemize} Surveys include \begin{itemize}% \item [[Charles Rezk]], \emph{Elliptic cohomology and elliptic curves}, Felix Klein Lectures, Bonn 2015 (\href{http://www.hcm.uni-bonn.de/fkl-rezk/}{web}) \end{itemize} Discussion of generalization to higher [[chromatic homotopy theory]] is discussed in \begin{itemize}% \item [[Douglas Ravenel]], \emph{Toward higher chromatic analogs of elliptic cohomology} \href{http://www.math.rochester.edu/people/faculty/doug/mypapers/high1.pdf}{pdf} \item [[Douglas Ravenel]], \emph{Toward higher chromatic analogs of elliptic cohomology II}, Homology, Homotopy and Applications, vol. 10(1), 2008, pp.1\{36 (\href{http://www.math.rochester.edu/people/faculty/doug/mypapers/high2.pdf}{pdf}, \href{http://www.math.rochester.edu/people/faculty/doug/mypapers/halifax.pdf}{pdf slides}) \end{itemize} \hypertarget{relation_to_quantum_field_theory}{}\subsubsection*{{Relation to quantum field theory}}\label{relation_to_quantum_field_theory} The [[elliptic genus]] and [[Witten genus]] were understood as the [[large volume limit]] of the [[partition function]] of the [[superstring]] in \begin{itemize}% \item [[Edward Witten]], \emph{Elliptic Genera And Quantum Field Theory} , Commun.Math.Phys. 109 525 (1987) (\href{http://projecteuclid.org/euclid.cmp/1104117076}{Euclid}) \end{itemize} The following reference discuss aspects of the construction of elliptic cohomology / [[tmf]] in terms of [[quantum field theory]]. See also at \emph{[[Witten genus]]}. \begin{itemize}% \item P Hu, [[Igor Kriz]], \emph{Conformal field theory and elliptic cohomology}, Advances in Mathematics, Volume 189, Issue 2, 20 December 2004, Pages 325--412 (\href{http://www.math.lsa.umich.edu/~ikriz/ell0311.pdf}{pdf}) \item [[Igor Kriz]], [[Hisham Sati]], \emph{M-theory, type IIA superstrings, and elliptic cohomology}, Adv. Theor. Math. Phys. 8 (2004), no. 2, 345--394 (\href{http://projecteuclid.org/euclid.atmp/1091543172}{Euclid}, \href{http://arxiv.org/abs/hep-th/0404013}{arXiv:hep-th/0404013}) \end{itemize} A proposal for a construction via [[FQFT]] is discussed at \begin{itemize}% \item \emph{[[(2,1)-dimensional Euclidean field theories and tmf]]}. \end{itemize} The case of elliptic cohomology associated with the [[Tate curve]] is discussed in \begin{itemize}% \item [[Pokman Cheung]], \emph{Supersymmetric field theories and cohomology} (\href{http://arxiv.org/abs/0811.2267}{arXiv:0811.2267}) \end{itemize} [[!redirects elliptic cohomologies]] [[!redirects elliptic cohomology theory]] [[!redirects elliptic cohomology theories]] [[!redirects elliptic generalized cohomology theory]] [[!redirects elliptic generalized cohomology theories]] \end{document}