\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{embedding of categories} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{1categorical_definitions}{1-categorical definitions}\dotfill \pageref*{1categorical_definitions} \linebreak \noindent\hyperlink{2categorical_definitions}{2-categorical definitions}\dotfill \pageref*{2categorical_definitions} \linebreak \noindent\hyperlink{relationship}{Relationship}\dotfill \pageref*{relationship} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_yoneda_embedding}{The Yoneda embedding}\dotfill \pageref*{the_yoneda_embedding} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In much of mathematics, certainly in the traditional treatment of mathematical [[structure in model theory|structures]] from the point of view of [[logic]] and [[model theory]], an ``[[embedding]]'' is typically a [[monomorphism]] between structures that preserves \emph{and reflects} the structure specified within a given [[language]] or [[theory]]. Such a notion is often definable directly in terms of [[category theory]], i.e., in terms of properties of morphisms in the designated category of structures and structure-preserving maps. But for categories themselves, the situation and practice is more complicated, with no notion of ``embedding of categories'' that is universally accepted in the literature. A critical dividing line, leading to several distinct notions of embedding, lies in how one views the [[Cat|category of categories]]: \begin{itemize}% \item If we view categories as mathematical structures in the traditional sense, with central concepts being definable in the ordinary 1-category of categories and [[functors]] (which are the relevant structure-preserving maps), then notions of embedding tend to emphasize they should be [[injective maps]] on the classes of objects (and more besides). \item If we view categories however as having a higher-dimensional aspect, i.e., if we view central concepts as being based rather on the [[2-category]] of categories, functors, \emph{and} [[natural transformations]], then different notions of embedding come to the fore, where notably the assumption of injectivity on the object-classes clashes with the [[principle of equivalence]] (and is therefore rejected). \end{itemize} In this article we survey the various notions of categorical embedding that have appeared in the literature, and try to describe some of the underlying contexts and rationales. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{1categorical_definitions}{}\subsubsection*{{1-categorical definitions}}\label{1categorical_definitions} Perhaps the most obvious 1-categorical definition of embedding is: \begin{itemize}% \item a [[functor]] $F: C \to D$ that is both injective on objects and a [[faithful functor]]. \end{itemize} This definition is adopted in \hyperlink{AHS}{Adamek-Herrlich-Strecker} and in \hyperlink{Riehl}{Riehl}, for example. In this definition we accept that categories are [[strict categories]], where objects can be compared for [[equality]]. Embeddings in this sense are straightforwardly the same thing as [[monomorphisms]] in the $1$-category [[Cat]]. If we define categories with \href{/nlab/show/category#OneCollectionOfMorphisms}{one collection of morphisms}, then this definition is equivalent to saying that the action of $F$ on morphisms is an [[injective function]] $Mor(C) \to Mor(D)$. In particular, if this latter condition holds and $F(c) = F(c')$ for objects $c, c'$ of $C$, then $F(1_c) = F(1_{c'})$ and thus $1_c = 1_{c'}$ by injectivity on morphisms, whence $c = c'$. However, as noted above, in many cases an ``embedding'' means something \emph{stronger} than a mere monomorphism, being required to reflect ``all the structure''. For instance, an embedding of [[topological spaces]] is a subspace inclusion, not merely an injective continuous map (the latter being the monos in [[Top]]). In particular, the above definition of embedding does not even reflect the property of objects being isomorphic, so that it is not necessarily injective on isomorphism classes of objects! This suggests that a (still 1-categorical) embedding of categories ought to be something stronger. Some possibilities include: \begin{itemize}% \item The [[regular monomorphisms]] or [[extremal monomorphisms]] in [[Cat]] (what are those?) \item Monomorphisms in $Cat$ that are also [[full functors]], hence [[fully faithful functors]]. These are sometimes called \textbf{full embeddings}. \item Monomorphisms in $Cat$ that are also injective on isomorphism classes of objects (this is used in [[Toposes, Triples, and Theories]]), or more strongly that are also [[pseudomonic functors]]. \end{itemize} \hypertarget{2categorical_definitions}{}\subsubsection*{{2-categorical definitions}}\label{2categorical_definitions} Most of the above 1-categorical notions of embedding corresponds to a ``pure'' 2-categorical notion by simply removing the injectivity on objects. Thus we have the following candidates: \begin{itemize}% \item [[faithful functors]] \item [[fully faithful functors]] \item [[pseudomonic functors]] \end{itemize} The choice between these is closely related to the question of giving an equivalence-invariant notion of [[subcategory]]. \hypertarget{relationship}{}\subsubsection*{{Relationship}}\label{relationship} Every fully faithful functor is \emph{equivalent} to one that is fully faithful and injective on objects. Let $f:C\to D$ be fully faithful, and let $E$ be the ``mapping cylinder'' category, whose objects are the disjoint unions of those of $C$ and $D$, with $C$ and $D$ embedded fully-faithfully (and of course injectively on objects), and $E(c,d) = D(f c,d)$ and $E(d,c) = D(d,f c)$. Full-faithfulness of $f$ allow us to compose all arrows in $E$ making it a category. There is a projection $E\to D$ that is the identity on $D$ and acts by $f$ on $C$, and which is an inverse equivalence to the inclusion $D\to E$. Thus, $f:C\to D$ is equivalent, in the 2-category whose objects are functors and whose morphisms are pseudo-commutative squares, to the inclusion functor $C\to E$, which is fully faithful and injective on objects. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{the_yoneda_embedding}{}\subsubsection*{{The Yoneda embedding}}\label{the_yoneda_embedding} Probably the most common embedding of categories encountered is the [[Yoneda embedding]]. This is fully faithful, but whether or not it is always injective on objects depends on set-theoretic details of how we define categories. If we use a definition of category with \href{/nlab/show/category#AFamilyOfCollectionsOfMorphisms}{a family of collections of morphisms}, then it might happen that two distinct (but necessarily isomorphic) objects $x$ and $y$ have $C(z,x) = C(z,y)$ as sets for all $z\in C$, so that the Yoneda embedding would take $x$ and $y$ to literally the same presheaf. (Such an equality of hom-sets is not as weird as it might sound; for instance, when regarding a [[preordered set]] as a category it's natural to define every nonempty homset to be the \emph{same} [[terminal set]].) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Barr embedding theorem]] \item [[embedding]] \item [[subcategory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jiří Adámek]], [[Horst Herrlich]], and [[George Strecker]], \emph{Abstract and Concrete Categories: The Joy of Cats}, John Wiley and Sons 1990. (\href{http://katmat.math.uni-bremen.de/acc/}{Online edition}) \item [[Emily Riehl]], \emph{Category Theory in Context}, Dover Publications, Inc. 2016. (\href{http://www.math.jhu.edu/~eriehl/context.pdf}{pdf}) \end{itemize} [[!redirects embedding of categories]] \end{document}