\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{end compactification} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{end_compactification}{}\section*{{End compactification}}\label{end_compactification} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_hemicompact_spaces_only}{For hemicompact spaces only}\dotfill \pageref*{for_hemicompact_spaces_only} \linebreak \noindent\hyperlink{abstract}{Abstract}\dotfill \pageref*{abstract} \linebreak \noindent\hyperlink{concrete}{Concrete}\dotfill \pageref*{concrete} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Whereas the [[one-point compactification]] of a (sufficiently [[nice topological space|nice]]) [[topological space]] adjoins only a single [[point at infinity]], the \emph{end compactification} adjoins one point for each [[connected component]] of infinity. The theory of ends was invented by [[Hans Freudenthal]] in his dissertation, who gave a number of interesting applications (see below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The definition was originally given only for sufficiently [[nice topological space|nice]] topological spaces (the [[hemicompact space|hemicompact]] ones). The general definition is a bit more complicated. We will give three versions. \hypertarget{for_hemicompact_spaces_only}{}\subsubsection*{{For hemicompact spaces only}}\label{for_hemicompact_spaces_only} Let $X$ be a [[topological space]], and suppose that $X$ is [[hemicompact space|hemicompact]]; this means that there exists an [[infinite sequence]] $n \mapsto K_n$ of [[compact subspaces]] of $X$ with $K_n \subseteq K_{n+1}$ such that every compact subspace of $X$ is contained in at least one (hence in almost all) of the $K_i$. Consider the [[connected components]] of the [[complements]] $X \setminus K_i$. An \textbf{end} of $X$ is an infinite sequence that chooses one such connected component for each $i$. Remarkably, the set of ends is independent of the sequence $K$ chosen (up to [[natural bijection]]). The \textbf{end compactification} of $X$ has, as its [[underlying set]], the [[disjoint union]] of the underlying set of $X$ and the set of ends. Its [[topological structure|topology]] is generated (from a [[topological base|base]]) by the topology of $X$ and, for each end $e = (U_1,U_2,\ldots)$, the [[open sets]] $V \cup \{e\}$ whenever $V$ is open in $X$ and $U_i \subseteq V$ for some (hence almost every) $i$. \hypertarget{abstract}{}\subsubsection*{{Abstract}}\label{abstract} Let $X$ be a [[topological space]], and consider the [[poset]] $Comp(X)$ of [[compact subspaces]] of $X$, ordered by [[inclusion]]. For each compact subspace $K$, consider its [[complement]] $X \setminus K$, and consider the [[set]] $\Pi_0(X \setminus K)$ of its [[connected components]]. For each inclusion $K \hookrightarrow K'$, we have a [[function]] $\Pi_0(X \setminus K') \to \Pi_0(X \setminus K)$. This defines a [[contravariant functor]] from $Comp(X)$ to [[Set]]; its [[limit]] is the \textbf{set of ends} of $X$. For the [[topological structure|topology]], each compact subspace $K$ defines a topological space $K \uplus \Pi_0(X \setminus K)$; here, the points of $\Pi_0(K \setminus K)$ are all [[isolated point|isolated]]. For each inclusion $K \hookrightarrow K'$, we have a [[continuous map]] $K' \uplus \Pi_0(X \setminus K') \to K \uplus \Pi_0(X \setminus K)$; it sends $x$ to itself if $x \in K$, and $x$ to the connected component $[x] \in \Pi_0(X \setminus K)$ if $x \in K' \setminus K$. This defines a [[contravariant functor]] from $Comp(X)$ to [[Top]]; its [[limit]] is the \textbf{end compactification} of $X$. \hypertarget{concrete}{}\subsubsection*{{Concrete}}\label{concrete} Let $X$ be a [[topological space]]. An \textbf{end} of $X$ assigns, to each [[compact subspace]] $K$ of $X$, a [[connected component]] $e_K$ of its [[complement]] $X \setminus K$, in such a way that $e_{K'} \subseteq e_K$ whenever $K \subseteq K'$. The \textbf{end compactification} of $X$ has, as its [[underlying set]], the [[disjoint union]] of the underlying set of $X$ and the set of ends. Its [[topological structure|topology]] is generated (from a [[topological base|base]]) by the topology of $X$ and, for each end $e\colon K \mapsto e_K$, the [[open sets]] $V \cup \{e\}$ whenever $V$ is open in $X$ and $e_K \subseteq V$ for some compact subspace $K$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} A [[compact space]] has no ends, hence is its own end compactification. The converse (that a space with no ends must be compact) seems to require the [[axiom of choice]] (although [[excluded middle]] and [[dependent choice]] suffice for hemicompact spaces). The end compactification of the [[real line]] is the [[extended real number]] line segment; the ends are $\infty$ and $-\infty$. But the [[complex plane]] has only one end; its end compactification is the [[Riemann sphere]] (the same as its [[one-point compactification]]). \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} Ends are important in [[proper homotopy theory]]. According to \hyperlink{Peschke}{Peschke}, Freudenthal was led to his theory of ends by the following observation. For a space $X$, consider a path-connected family $F \subseteq Homeo(X)$ containing the identity $1_X$. Let $K \subseteq X$ be compact, and let $U$ be a connected component of $X \setminus K$. Then for all $f \in F$, it may be shown $f(U) \setminus U$ is contained in a compact subset of $X$. The upshot is that $f$ extends to a homeomorphism on the end compactification that is \emph{pointwise fixed} on the ends. If in addition for each pair $(x, y) \in X^2$ there is $f \in F$ with $f(x) = y$, then there is a severe constraint on the ends; in particular Freudenthal showed the following. \begin{theorem} \label{}\hypertarget{}{} A path-connected topological group has at most two ends. \end{theorem} For example, it follows that the space obtained by removing two points from $\mathbb{R}^3$ cannot be given a topological group structure. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[compactification]] \begin{itemize}% \item [[One-point compactification]] \item [[Stone–Cech compactification]] \item \textbf{End compactification} \item [[Bohr compactification]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{https://en.wikipedia.org/wiki/End_%28topology%29}{Wikipedia} \item G. Peschke, \emph{The Theory of Ends}, Nieuw Archief voor Wiskunde, 8 (1990), 1--12. (\href{https://www.ualberta.ca/~gepe/pdf/Peschke_TheoryOfEnds.pdf}{pdf}) \end{itemize} \begin{itemize}% \item H. Freudenthal, \emph{\"U{}ber die Enden topologischer R\"a{}ume und Gruppen}, Math. Z. 33 (1931), 692--713. (\href{http://dspace.library.uu.nl/bitstream/handle/1874/7437/1930-freudenthal-dissertatie.pdf?sequence=1}{web}) \end{itemize} [[!redirects end compactification]] [[!redirects end compactifications]] [[!redirects topological end]] [[!redirects topological ends]] [[!redirects end of a topological space]] [[!redirects ends of a topological space]] [[!redirects ends of topological spaces]] \end{document}