\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{energy} \begin{quote}% this entry needs attention \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{energy}{}\section*{{Energy}}\label{energy} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{conservation}{Conservation}\dotfill \pageref*{conservation} \linebreak \noindent\hyperlink{relationship_to_mass}{Relationship to mass}\dotfill \pageref*{relationship_to_mass} \linebreak \noindent\hyperlink{in_special_relativity}{In special relativity}\dotfill \pageref*{in_special_relativity} \linebreak \noindent\hyperlink{in_general_relativity}{In general relativity}\dotfill \pageref*{in_general_relativity} \linebreak \noindent\hyperlink{enrgy_scales}{Enrgy scales}\dotfill \pageref*{enrgy_scales} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[physics]], the \textbf{energy} of a [[physical system]] is one of its most basic [[observable]] properties, an [[extensive quantity]] roughly measuring how much stuff is in the system. In [[experiment]] it is often measured in [[units]] of [[electronvolt]]. The term `energy' is also used in [[Riemannian geometry]] and [[statistics]] in vague analogy with the concept from physics. \hypertarget{conservation}{}\subsection*{{Conservation}}\label{conservation} As a system [[time evolution|evolves]] without interacting with its environment, its energy remains constant. If different systems [[interaction|interact]], then they may exchange energy, but the total energy remains constant; equivalently, we may combine the interacting systems into a supersystem whose energy is the sum of the energies of its parts, and this supersystem's energy is conserved. Through [[Noether's theorem]], conservation of energy corresponds to [[time]] invariance. If a system's equations of motion are \emph{not} invariant with time, then the system will not exhibit energy conservation, and physically we conclude that the system must be interacting with something else. In [[continuum physics]], conservation of energy may be treated locally: the change in energy in any region over a period of time must equal the total flux of energy through the region's boundary over that time. In [[general relativity]], this makes sense (in general) only as a [[differential equation]] involving both the [[stress-energy tensor]] and the [[Levi-Civita connection]]. \hypertarget{relationship_to_mass}{}\subsection*{{Relationship to mass}}\label{relationship_to_mass} Energy is distinguished from [[mass]] in various ways: \begin{itemize}% \item \textbf{Relativistic mass} is the same as energy, although conventionally measured in different [[unit of measurement|units]]. We have $E = m c^2$ in conventional units, or simply $E = m$ in units where the [[speed of light]] is $c = 1$. \item \textbf{[[rest mass|Rest mass]]} (the usual meaning of `mass' in modern physics) is the minimum energy inherent in a system; whereas energy is relative, rest mass is absolute. Here we have \begin{equation} E = m c^2 \sqrt{1 - \frac {v^2} {c^2}} \label{emcg}\end{equation} in conventional units, or \begin{equation} E = m \sqrt{1 - v^2} \label{emg}\end{equation} if $c = 1$. \item In the non-relativistic limit, energy splits into two independently conserved quantities: mass (relativistic or rest, it makes no difference) and energy proper. That is, expanding \eqref{emcg} as a [[power series]] in $v$, we have \begin{displaymath} E = m c^2 + \frac 1 2 m v^2 + \frac 3 8 m \frac {v^4} {c^2} + \cdots ; \end{displaymath} as $c \to \infty$, this splits into the quantities $m$, $(1/2) m v^2$, $(3/8) m v^4$, etc. The first of these is the non-relativistic mass, the second is the [[kinetic energy]] $K$, the next is simply $3 K^2 / 2 m$, and all subsequent terms are also determined by $m$ and $K$. However, the kinetic energy $K$ is not the \emph{total} energy in non-relativistic physics. Any entities with a rest mass of $0$ (or approaching zero in the limit) will still have energy and so must be treated separately from kinetic energy (which is proportional to mass). Non-relativistically, these may be viewed as [[field theory|fields]] with energy of their own, or (if the field strengths are derived entirely from interacting massive bodies) this energy may be attributed to the massive bodies in the system as [[potential energy]]. Thus the total energy of the system is $E = K + U$, where $K$ is total kinetic energy and $U$ is total potential or field energy. \end{itemize} \hypertarget{in_special_relativity}{}\subsection*{{In special relativity}}\label{in_special_relativity} In relativistic physics, energy is relative, the timelike part of a [[4-vector]] quantity whose spacelike parts comprise [[linear momentum]]. If we also take into account the distribution of energy and momentum across space, this give a symmetric second-rank [[tensor]], the [[stress-energy tensor]]. Even in non-relativistic physics, there is an analogy between energy and linear momentum. In [[Hamiltonian mechanics]], both energy and linear momentum are examples of [[generalized momentum|generalised momenta]]; energy corresponds to [[time]] while linear momentum corresponds to position in [[physical space|space]]. However, the special treatment accorded to time and energy in the usual formulation of Hamiltonian mechanics obscures this; we also have (oddly) that the precise generalised momentum corresponding to the time variable $t$ is not the total energy $H$ but $-H$ instead. This analogy from [[classical mechanics]] also applies to [[quantum mechanics]] and is particularly evident in Schr\"o{}dinger's original formulation of his quantum theory. [[!include plane waves -- table]] \hypertarget{in_general_relativity}{}\subsection*{{In general relativity}}\label{in_general_relativity} In [[general relativity]], the concept of total energy of a system does not make sense, except in certain special cases. General relativity is a [[field theory]] in which energy appears only as one of $10$ (or $({n \atop 2})$ in $n$ [[dimensions]] of [[spacetime]]) independent components of the [[stress-energy tensor]]. Mathematically, it makes no sense to integrate just this component over a region of space to determine a total energy in that region. This makes it difficult to interpret general relativity in frameworks such as [[Hamiltonian mechanics]] and [[thermodynamics]] where energy is a primary concept. This is called the [[problem of time]] (since energy and [[time]] are conjugate observables and the problem occurs with both). \hypertarget{enrgy_scales}{}\subsection*{{Enrgy scales}}\label{enrgy_scales} [[energy]] $\,$ [[scales]]: $\backslash$begin\{center\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from \href{http://sten.astronomycafe.net/the-particle-desert/}{here} \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Dirichlet energy]], [[harmonic map]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Serious references discussing energy in general relativity include \begin{itemize}% \item [[Edward Witten]], \emph{A new proof of the positive energy theorem}, Comm. Math. Phys. \textbf{80} (1981), no. 3, 381--402, \href{http://www.ams.org/mathscinet-getitem?mr=626707}{MR83e:83035}, \href{http://projecteuclid.org/getRecord?id=euclid.cmp/1103919981}{euclid} \item A. Trautman, \emph{Conservation laws in general relativity. In: Gravitation: an introduction to current research}, Witten, L. (ed.). New York: Wiley 1962; \item Misner, C., Thome, K.S., Wheeler, J.A.: Gravitation. San Francisco: W. H. Freeman 1973; \item S. Weinberg, \emph{Gravitation and cosmology}, New York: Wiley 1972 \item R. Schoen, S. T. Yau, Comm. Math. Phys. 65 (1979), no. 1, 45--76; MR80j:83024 \end{itemize} [[!redirects energy]] [[!redirects energies]] [[!redirects relativistic mass]] [[!redirects relativistic masses]] \end{document}