\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{enhanced gauge symmetry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{chernweil_theory}{}\paragraph*{{Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{on_coincident_dbranes}{On coincident D-branes}\dotfill \pageref*{on_coincident_dbranes} \linebreak \noindent\hyperlink{from_massless_bps_states}{From massless BPS states}\dotfill \pageref*{from_massless_bps_states} \linebreak \noindent\hyperlink{for_mk6_branes_at_adesingularities}{For MK6 branes at ADE-singularities}\dotfill \pageref*{for_mk6_branes_at_adesingularities} \linebreak \noindent\hyperlink{on_m9branes}{On M9-Branes}\dotfill \pageref*{on_m9branes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{ReferencesOnCoincidentDBranes}{On coincident D-branes}\dotfill \pageref*{ReferencesOnCoincidentDBranes} \linebreak \noindent\hyperlink{on_mbranes_at_adesingularities}{On M-branes at ADE-singularities}\dotfill \pageref*{on_mbranes_at_adesingularities} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generally, an \emph{enhanced gauge symmetry} refers to the appearance of [[gauge theory]] with a larger [[gauge group]] than may be superficially apparent. \hypertarget{on_coincident_dbranes}{}\subsubsection*{{On coincident D-branes}}\label{on_coincident_dbranes} A famous case is the enhanced gauge symmetry in the [[Chan-Paton gauge fields]] of coincident [[D-branes]]. A priori each D-brane carries a [[complex line bundle]]/[[circle principal bundle]], but as $n$ of them coincide the [[gauge group]] is expected to enhance from $(U(1))^n$ to the [[unitary group]] $U(n)$ (or the [[special unitary group]] $SU(n)$). Mathematically this gauge enhancement on D-branes is modeled by the [[Baum-Douglas geometric cycle]] model for [[K-homology]] (\hyperlink{ReisSzabo05}{Reis-Szabo 05, def. 1.5 and p. 16}, \hyperlink{Szabo08}{Szabo 08, p. 4}): One such cycle is given by a submanifold $W \overset{\phi}{\hookrightarrow} X$ of [[spacetime]] $X$ equipped with [[spin{\tt \symbol{94}}c structure]] and with a [[complex vector bundle]] $E \to X$, and given two such cycles $(W,\phi,E_1)$ and $(W,\phi,E_2)$ with the same underlying manifold (``coincident D-brane [[worldvolume]]'') then their formal [[direct sum]] is identified with the single cycle carrying the [[direct sum of vector bundles]] \begin{displaymath} (W,\phi, E_1) + (W, \phi, E_2) \;\sim\; (W, \phi, E_1 \oplus E_2) \,. \end{displaymath} If here $E_i$ has [[rank]] $n_i$ and hence [[structure group]] $U(n_i)$, then the [[direct sum of vector bundles]] $E_1 \oplus E_2$ has [[structure group]] the [[product group]] $U(n_1) \times U(n_2)$. In particular the sum of $n$ coincident cycles each carrying a line bundle yields a rank-$n$ vector bundle with structure group $(U(1))^n$. In this sense then a cycle carrying a general rank $n$-vector bundle, hence with structure group $U(n)$, may be thought of as a ``gauge enhancement'' of making $n$ D-branes coincide. \hypertarget{from_massless_bps_states}{}\subsubsection*{{From massless BPS states}}\label{from_massless_bps_states} In the context of the realization of [[super Yang-Mills theories]] as [[effective field theories]] of [[superstring theory]], [[BPS branes]] in the string background becomes BPS states of the SYM theory. These become massless as the [[cycles]] on which the BPS charge is supported shrink away (at boundary points of the given [[moduli space]]). In this case these additional massless states may appear as additional gauge bosons in the compactified gauge theory which thereby develops a larger gauge group. Typically a previously abelian gauge group becomes non-abelian this way. Examples include [[KK-compactification]] of [[M-theory]] on [[K3]] fibers and on [[G2-manifolds]] with [[ADE singularities]], corresponding to [[F-theory]] on [[elliptic fibrations]] making [[K3]]-fibrations with singular fibers, corresponding to [[heterotic string theory]] on singular elliptic fibrations. See at \begin{itemize}% \item [[M-theory lift of gauge enhancement on D6-branes]] \item \emph{[[M-theory on G2-manifolds]]} the section \emph{\href{M-theory+on+G2-manifolds#EnhancedGaugeGroups}{Nonabelian gauge groups and chiral fermions at orbifold singularities}}; \item \emph{[[F-theory]]} the section \emph{\href{F-theory#Fbranescan}{F-brane scan}} \item \emph{[[duality between F-theory and heterotic string theory]]}. \end{itemize} \hypertarget{for_mk6_branes_at_adesingularities}{}\subsubsection*{{For MK6 branes at ADE-singularities}}\label{for_mk6_branes_at_adesingularities} The [[blow-up]] of an [[ADE-singularity]] is given by a [[union]] of [[Riemann spheres]] that touch each other such as to form the shape of the [[Dynkin diagram]] whose A-D-E label corresponds to that of the given [[finite subgroup of SU(2)]]. This statement is originally due to (\hyperlink{duVal1934I}{duVal 1934 I, p. 1-3 (453-455)}). A description in terms of [[hyper-Kähler geometry]] is due to \hyperlink{Kronheimer89a}{Kronheimer 89a}. Quick survey of this fact is in \hyperlink{Reid87}{Reid 87}, a textbook account is \hyperlink{Slodowy80}{Slodowy 80}. In [[string theory]] this fact is interpreted in terms of [[gauge enhancement]] of the [[M-theory]]-lift of coincident [[black brane|black]] [[D6-branes]] to an [[MK6]] at an ADE-singularity (\href{enhanced+gauge+symmetry#Sen97}{Sen 97}): \begin{quote}% graphics grabbed from \href{http://ncatlab.org/schreiber/show/Equivariant+homotopy+and+super+M-branes}{HSS18} \end{quote} See at \emph{[[M-theory lift of gauge enhancement on D6-branes]]} for more. \hypertarget{on_m9branes}{}\subsubsection*{{On M9-Branes}}\label{on_m9branes} In [[Horava-Witten theory]] there is supposed to be gauge enhancement over the [[M9-branes]] such as to identify their [[worldvolume]] theory with [[E8]]-[[heterotic string theory]]. Under the [[duality in string theory|duality]] between [[M-theory]] and [[type IIA string theory]] the M9-brane may be identified with the [[O8-plane]]: \begin{quote}% from \hyperlink{GKSTY02}{GKSTY 02, section 3} \end{quote} This may be used to understand the [[gauge enhancement]] to [[E8]]-[[gauge groups]] at the [[heterotic string theory|heterotic]] boundary of [[Horava-Witten theory]]: \begin{quote}% from \hyperlink{GKSTY02}{GKSTY 02, section 3} \end{quote} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[spontaneously broken symmetry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{ReferencesOnCoincidentDBranes}{}\subsubsection*{{On coincident D-branes}}\label{ReferencesOnCoincidentDBranes} The idea that on $N$ coincident D-branes there is gauge enhancement to $U(N)$-gauge field theory is due to \begin{itemize}% \item [[Edward Witten]], section 3 of \emph{Bound States Of Strings And $p$-Branes}, Nucl.Phys.B460:335-350, 1996 (\href{https://arxiv.org/abs/hep-th/9510135}{arXiv:hep-th/9510135}) \end{itemize} There, this is called an ``obvious guess'' (first line on p. 8). Subsequently, most authors cite this obvious guess as a fact; for instance the review \begin{itemize}% \item [[Robert Myers]], section 3 of \emph{Nonabelian Phenomena on D-branes}, Class.Quant.Grav. 20 (2003) (\href{https://arxiv.org/abs/hep-th/0303072}{arXiv:hep-th/0303072}) \end{itemize} Discussion in terms of [[boundary conformal field theory]] is in \begin{itemize}% \item [[Jürgen Fuchs]], P. Kaste, [[Wolfgang Lerche]], C. Lutken, [[Christoph Schweigert]], J. Walcher, \emph{Boundary Fixed Points, Enhanced Gauge Symmetry and Singular Bundles on K3}, Nucl.Phys.B598:57-72, 2001 (\href{https://arxiv.org/abs/hep-th/0007145}{arXiv:hep-th/0007145}) \end{itemize} By actual computation in [[open string field theory]] ``convincing evidence'' for the nonabelian [[Yang-Mills theory]] on coincident D-branes was found, numerically, in (see bottom of p. 22) \begin{itemize}% \item Erasmo Coletti, Ilya Sigalov, [[Washington Taylor]], \emph{Abelian and nonabelian vector field effective actions from string field theory}, JHEP 0309 (2003) 050 (\href{https://arxiv.org/abs/hep-th/0306041}{arXiv:hep-th/0306041}) \end{itemize} Similar numerical derivation, as well as exact derivation at zero momentum, is in \begin{itemize}% \item [[Nathan Berkovits]], [[Martin Schnabl]], \emph{Yang-Mills Action from Open Superstring Field Theory}, JHEP 0309 (2003) 022 (\href{https://arxiv.org/abs/hep-th/0307019}{arXiv:hep-th/0307019}) \end{itemize} The first full derivation seems to be due to \begin{itemize}% \item [[Taejin Lee]], \emph{Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge}, Journal of the Korean Physical Society December 2017, Volume 71, Issue 12, pp 886–903 (\href{https://arxiv.org/abs/1609.01473}{arXiv:1609.01473}) \end{itemize} which is surveyed in \begin{itemize}% \item [[Taejin Lee]], \emph{Deformation of the Cubic Open String Field Theory}, Phys. Lett. B 768 (2017) 248 (\href{https://arxiv.org/abs/1701.06154}{arXiv:1701.06154}) \end{itemize} That on [[D0-branes]] this reproduces the [[BFSS matrix model]] and on [[D(-1)-branes]] the [[IKKT matrix model]] is shown in \begin{itemize}% \item [[Taejin Lee]], \emph{Covariant Open String Field Theory on Multiple D$p$-Branes} (\href{https://arxiv.org/abs/1703.06402}{arXiv:1703.06402}) \end{itemize} Discussion of gauge enhancement on coincident D-branes in terms of [[Baum-Douglas geometric cycles]] for [[K-homology]] is in \begin{itemize}% \item Rui Reis, [[Richard Szabo]], \emph{Geometric K-Homology of Flat D-Branes} ,Commun.Math.Phys. 266 (2006) 71-122, Journal of the Korean Physical Society December 2017, Volume 71, Issue 12, pp 886–903 (\href{https://arxiv.org/abs/hep-th/0507043}{arXiv:hep-th/0507043}) \end{itemize} reviewed in \begin{itemize}% \item [[Richard Szabo]], \emph{D-branes and bivariant K-theory}, Noncommutative Geometry and Physics 3 1 (2013): 131. (\href{http://arxiv.org/abs/0809.3029}{arXiv:0809.3029}) \end{itemize} Derivation via [[rational parameterized stable homotopy theory]] applied to [[schreiber:The brane bouquet]] is in \begin{itemize}% \item [[Vincent Braunack-Mayer]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Gauge enhancement of Super M-Branes]]} (\href{https://arxiv.org/abs/1806.01115}{arXiv:1806.01115}) \end{itemize} \hypertarget{on_mbranes_at_adesingularities}{}\subsubsection*{{On M-branes at ADE-singularities}}\label{on_mbranes_at_adesingularities} The picture of [[M-theory lift of gauge enhancement on D6-branes]] is due to \begin{itemize}% \item [[Ashoke Sen]], Section 2, \emph{A Note on Enhanced Gauge Symmetries in M- and String Theory}, JHEP 9709:001,1997 (\href{http://arxiv.org/abs/hep-th/9707123}{arXiv:hep-th/9707123}) \end{itemize} Review of the standard lore of gauge enhancement in M-theory includes \begin{itemize}% \item Adam B. Barrett, section 2.3 (following \hyperlink{AcharyaGukov04}{Acharya-Gukov 04}) of \emph{M-Theory on Manifolds with $G_2$ Holonomy}, 2006 (\href{http://arxiv.org/abs/hep-th/0612096}{arXiv:hep-th/0612096}) \end{itemize} (\ldots{}) \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles include \begin{itemize}% \item [[Edward Witten]], section 4.6 of \emph{[[String Theory Dynamics In Various Dimensions]]}, Nucl.Phys.B443:85-126,1995 (\href{http://arxiv.org/abs/hep-th/9503124}{arXiv:hep-th/9503124}) \item [[Chris Hull]], [[Paul Townsend]], \emph{Enhanced Gauge Symmetries in Superstring Theories}, Nucl.Phys. B451 (1995) 525-546 (\href{http://arxiv.org/abs/hep-th/9505073}{arXiv:hep-th/9505073}) \item [[Paul Aspinwall]], \emph{Enhanced Gauge Symmetries and K3 Surfaces}, Phys.Lett. B357 (1995) 329-334 (\href{http://arxiv.org/abs/hep-th/9507012}{arXiv:hep-th/9507012}) \item [[Chris Hull]], \emph{Duality, Enhanced Symmetry and Massless Black Holes}, in Proceedings of Strings'95: Future Perspectives in String Theory (World Scientific, 1996, I. Bars et al. eds.), p. 230 (\href{http://physics.usc.edu/Strings95/Proceedings/pdf/hull.pdf}{pdf}) \item M. Bershadsky, [[Ken Intriligator]], [[Shamit Kachru]], [[David Morrison]], V. Sadov, [[Cumrun Vafa]], \emph{Geometric Singularities and Enhanced Gauge Symmetries}, Nucl.Phys.B481:215-252,1996 (\href{http://arxiv.org/abs/hep-th/9605200}{arXiv:hep-th/9605200}) \item [[Philip Candelas]], Eugene Perevalov, Govindan Rajesh, \emph{Toric Geometry and Enhanced Gauge Symmetry of F-Theory/Heterotic Vacua}, Nucl.Phys. B507 (1997) 445-474 (\href{http://arxiv.org/abs/hep-th/9704097}{arXiv:hep-th/9704097}) \item [[Mirjam Cvetic]], [[Chris Hull]], \emph{Wrapped Branes and Supersymmetry}, Nucl.Phys.B519:141-158,1998 (\href{http://arxiv.org/abs/hep-th/9709033}{arXiv:hep-th/9709033}) \item [[Bobby Acharya]], [[Sergei Gukov]], \emph{M theory and Singularities of Exceptional Holonomy Manifolds}, Phys.Rept.392:121-189,2004 (\href{http://arxiv.org/abs/hep-th/0409191}{arXiv:hep-th/0409191}) \item [[James Halverson]], [[David Morrison]], \emph{On Gauge Enhancement and Singular Limits in $G_2$ Compactifications of M-theory} (\href{http://arxiv.org/abs/1507.05965}{arXiv:1507.05965}) \item [[Neil Lambert]], Miles Owen, \emph{Charged Chiral Fermions from M5-Branes} (\href{https://arxiv.org/abs/1802.07766}{arXiv:1802.07766}) \end{itemize} Discussion via duality of [[M9-branes]] to [[O-planes]] is in \begin{itemize}% \item E. Gorbatov, V.S. Kaplunovsky, J. Sonnenschein, [[Stefan Theisen]], S. Yankielowicz, section 3 of \emph{On Heterotic Orbifolds, M Theory and Type I' Brane Engineering}, JHEP 0205:015, 2002 (\href{https://arxiv.org/abs/hep-th/0108135}{arXiv:hep-th/0108135}) \end{itemize} [[!redirects enhanced gauge symmetries]] [[!redirects gauge enhancement]] [[!redirects gauge enhancements]] \end{document}