\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivalence in homotopy type theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{equality_and_equivalence}{}\paragraph*{{Equality and Equivalence}}\label{equality_and_equivalence} [[!include equality and equivalence - contents]] \hypertarget{equivalences_in_type_theory}{}\section*{{Equivalences in type theory}}\label{equivalences_in_type_theory} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Semantics}{Semantics}\dotfill \pageref*{Semantics} \linebreak \noindent\hyperlink{of_}{Of $isEquiv(-)$}\dotfill \pageref*{of_} \linebreak \noindent\hyperlink{of__2}{Of $Equiv(-)$}\dotfill \pageref*{of__2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[homotopy type theory]], the notion of \textbf{equivalence} is an internalization of the notion of [[equivalence]] or [[homotopy equivalence]]. These are sometimes called \textbf{[[weak equivalences]]}, but there is nothing [[weak equivalence|weak]] about them (in particular, they always have homotopy inverses). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We work in [[intensional type theory|intensional]] [[type theory]] with [[dependent sums]], [[dependent products]], and [[identity types]]. \begin{defn} \label{}\hypertarget{}{} For $f\colon A\to B$ a [[term]] of [[function type]]; we define new [[dependent types]] as follows: the [[homotopy fiber]] \begin{displaymath} f \colon A \to B, b\colon B \vdash hfiber(f,b) \coloneqq \sum_{a\colon A} (f(a) = b) \end{displaymath} and the [[proposition]] that the homotopy fiber is a (dependently) [[contractible type]]: \begin{displaymath} f \colon A \to B \vdash isEquiv(f) \coloneqq \prod_{b\colon B} isContr(hfiber(f,b)) \,. \end{displaymath} We say $f$ is an \textbf{equivalence} if $isEquiv(f)$ is an [[inhabited type]]. \end{defn} That is, a function is an equivalence if all of its [[homotopy fibers]] are [[contractible types]] (in a way which depends continuously on the base point). \begin{defn} \label{}\hypertarget{}{} For $X, Y : Type$ two [[types]], the \textbf{type of equivalences} from $X$ to $Y$ is the [[dependent sum]] \begin{displaymath} Equiv(X,Y) = (X \stackrel{\simeq}{\to}Y) \coloneqq \sum_{f : (X \to Y)} isEquiv(f) \,. \end{displaymath} \end{defn} Three variations of this definition are, informally: \begin{itemize}% \item $f\colon A\to B$ is an equivalence if there is a map $g\colon B\to A$ and homotopies $p\colon \prod_{a\colon A} (g(f(a)) = a)$ and $q\colon \prod_{b\colon B} (f(g(b)) = b)$ (a \textbf{[[homotopy equivalence]]}) \item $f\colon A\to B$ is an equivalence if there is the above data, together with a higher homotopy expressing one [[triangle identity]] for $f$ and $g$ (an \textbf{[[adjoint equivalence]]}). \item $f\colon A\to B$ is an equivalence if there are maps $g,h\colon B\to A$ and homotopies $p\colon \prod_{a\colon A} (g(f(a)) = a)$ and $q\colon \prod_{b\colon B} (f(h(b)) = b)$ (sometimes called a \textbf{homotopy isomorphism}). \end{itemize} By formalizing these, we obtain types $homotopyEquiv(f)$, $isAdjointEquiv(f)$, and $isHIso(f)$. All four of these types are co-inhabited: we have a function from any one of them to any of the others. Moreover, at least if we assume [[function extensionality]], the types $isAdjointEquiv(f)$ and $isHIso(f)$ are themselves \emph{equivalent} to $isEquiv(f)$, and all three are [[h-propositions]]. This is not true for $homotopyEquiv(f)$, which is not in general an h-prop even with function extensionality. However, often the most convenient way to show that $f$ is an equivalence is by exhibiting a term in $homotopyEquiv(f)$ (although such a term could just as well be interpreted to lie in $isHIso(f)$ with $h\coloneqq g$). \hypertarget{Semantics}{}\subsection*{{Semantics}}\label{Semantics} We discuss the [[categorical semantics]] of equivalences in homotopy type theory. Let $\mathcal{C}$ be a [[locally cartesian closed category]] which is a [[model category]], in which the (acyclic cofibration, fibration) [[weak factorization system]] has [[stable path objects]], and acyclic cofibrations are preserved by pullback along fibrations between fibrant objects. (We ignore questions of coherence, which are not important for this discussion.) For instance $\mathcal{C}$ could be a [[type-theoretic model category]]. \hypertarget{of_}{}\subsubsection*{{Of $isEquiv(-)$}}\label{of_} \begin{prop} \label{}\hypertarget{}{} For $A, B$ two [[cofibrant object|cofibrant]]-[[fibrant objects]] in $\mathcal{C}$, a morphism $f\colon A\to B$ is a [[weak equivalence]] or equivalently a [[homotopy equivalence]] in $\mathcal{C}$ precisely when the interpretation of $isEquiv(f)$ has a [[generalized element|global point]] $* \to isEquiv(f)$. \end{prop} \begin{proof} For $f\colon A\to B$, the [[categorical semantics]] of the [[dependent type]] \begin{displaymath} b\colon B \;\vdash\; hfiber(f,b)\colon Type \end{displaymath} is by the rules for the [[categorical semantics|interpretation]] of [[identity types]] and [[substitution]] the [[mapping path space]] construction $P f$, given by the [[pullback]] \begin{displaymath} \itexarray{ [b : B \vdash hfiber(f,b)] &\coloneqq & P f &\to& A \\ && \downarrow && \downarrow^{\mathrlap{f}} \\ && B^I &\to& B \\ && \downarrow \\ && B } \end{displaymath} which, by the [[factorization lemma]], is one way to factor $f$ as an [[acyclic cofibration]] followed by a [[fibration]] \begin{displaymath} f : A \stackrel{\simeq}{\to} P f \to B \,. \end{displaymath} By definition and the semantics of [[contractible types]], therefore, if $A$ and $B$ are cofibrant, then $isEquiv(f)$ has a [[global element]] \begin{displaymath} * \to \prod_{b} isContr(hfiber(f,b)) \end{displaymath} precisely when in this factorization, the fibration $P f \to B$ is an acyclic fibration. (See for instance (\href{http://www.sandiego.edu/~shulman/hottminicourse2012/03models.pdf#page=49}{Shulman, page 49}) for more details.) But by the [[2-out-of-3 property]], this is equivalent to $f$ being a weak equivalence --- and hence a homotopy equivalence, since it is a map between fibrant-cofibrant objects. \end{proof} \begin{remark} \label{InterpretationIfIsEquivAsDependentType}\hypertarget{InterpretationIfIsEquivAsDependentType}{} In the above we fixed one function $f : A \to X$. But the type $isEquiv$ is actually a [[dependent type]] \begin{displaymath} f : A \to B \vdash isEquiv(f) \end{displaymath} on the [[function type|type of all functions]]. To obtain the [[categorical semantics]] of this general dependent $isEquiv$-construction, first notice that the interpretation of $f : A \to B,\; a : A,\; b : B \;\vdash\; (f(a) = b) \colon Type$ is by the rules for interpretation of [[identity types]], [[evaluation]] and [[substitution]] the left vertical morphism in the [[pullback]] [[diagram]] \begin{displaymath} \itexarray{ Q &\to& B^I \\ \downarrow && \downarrow \\ [A,B] \times A \times B &\stackrel{(eval, id_B)}{\to}& B \times B } \,, \end{displaymath} where $eval : [A, B] \times A \to B$ is the [[evaluation map]] for the [[internal hom]]. This means that the interpretation of further [[dependent sum]] yielding $hfib$ \begin{displaymath} f : A \to B,\; b : B \; \vdash \; \left( \sum_{a : A } (f(a) = b) \right) \colon Type \end{displaymath} is the composite left vertical morphism in \begin{displaymath} \itexarray{ Q &\to& B^I \\ \downarrow && \downarrow \\ [A,B] \times A \times B &\stackrel{(eval, id_B)}{\to}& B \times B \\ \downarrow^{\mathrlap{p_{1,3}}} \\ [A,B] \times B } \end{displaymath} \end{remark} \hypertarget{of__2}{}\subsubsection*{{Of $Equiv(-)$}}\label{of__2} (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{isEquiv} \item [[isContr]] \item [[isProp]] \item [[homotopy equivalence]] \begin{itemize}% \item [[weak homotopy equivalence]] \item [[stable weak homotopy equivalence]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An introduction to equivalence in homotopy type theory is in \begin{itemize}% \item [[Andrej Bauer]], \emph{A seminar on HoTT equivalences} (\href{http://homotopytypetheory.org/2011/12/07/a-seminar-on-hott-equivalences/}{blog post}) \end{itemize} and basic ideas are also indicated from \href{https://home.sandiego.edu/~shulman/hottminicourse2012/02hott.pdf#page=60}{slide 60 of part 2}, \href{https://home.sandiego.edu/~shulman/hottminicourse2012/03models.pdf#page=49}{slide 49 of part 3} of \begin{itemize}% \item [[Mike Shulman]], \emph{Minicourse in homotopy type theory} (2012) (\href{https://home.sandiego.edu/~shulman/hottminicourse2012/}{web}) \end{itemize} [[Coq]] code for homotopy equivalences is at \begin{itemize}% \item \href{https://github.com/HoTT/HoTT/blob/master/theories/Basics/Equivalences.v}{HoTT repository} \end{itemize} [[!redirects isEquiv]] [[!redirects equivalence in homotopy type theory]] [[!redirects equivalences in homotopy type theory]] [[!redirects equivalence in type theory]] [[!redirects equivalences in type theory]] [[!redirects equivalence in HoTT]] [[!redirects equivalences in HoTT]] [[!redirects adjoint equivalence in homotopy type theory]] [[!redirects adjoint equivalences in homotopy type theory]] [[!redirects adjoint equivalence in type theory]] [[!redirects adjoint equivalences in type theory]] [[!redirects adjoint equivalence in HoTT]] [[!redirects adjoint equivalences in HoTT]] [[!redirects weak equivalence in homotopy type theory]] [[!redirects weak equivalences in homotopy type theory]] [[!redirects weak equivalence in type theory]] [[!redirects weak equivalences in type theory]] [[!redirects weak equivalence in HoTT]] [[!redirects weak equivalences in HoTT]] [[!redirects homotopy isomorphism]] [[!redirects h-isomorphism]] \end{document}