\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant cohomotopy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivariant_hopf_degree_theorem}{Equivariant Hopf degree theorem}\dotfill \pageref*{equivariant_hopf_degree_theorem} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{equivariant_cohomotopy_of__in_rodegree_}{Equivariant Cohomotopy of $S^V$ in RO-degree $V$}\dotfill \pageref*{equivariant_cohomotopy_of__in_rodegree_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_mbrane_charge_quantization}{For M-brane charge quantization}\dotfill \pageref*{for_mbrane_charge_quantization} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[Bredon cohomology]]-[[equivariant cohomology|equivariant]] enhancement of [[cohomotopy]]-theory is \emph{equivariant cohomotopy}: For $G$ a [[group]], $V$ a [[finite dimensional vector space|finite-dimensional]] [[real vector space|real]] $G$-[[representation]] $G \to O(V)$ and writing $S^V$ for the corresponding [[representation sphere]], the \emph{equivariant cohomotopy} in [[RO(G)-degree]] $V$ of a [[G-space]] $X$ is the set of $G$-[[equivariant homotopy theory|equivariant]] [[homotopy classes]] of maps from $X$ to $S^V$: \begin{displaymath} \pi_G^V\big( X \big) \;\coloneqq\; \left[ X, S^V \right]^G \,. \end{displaymath} For $V = \mathbb{R}^n$ the [[trivial representation]] of [[dimension]] $n$, this reduces to the definition of plain [[cohomotopy]]-sets \begin{displaymath} \pi^{\mathbb{R}^n}(X) \;=\; \pi^n(X) \;=\; \left[ X, S^n\right] \,. \end{displaymath} The [[stabilization]] of this construction, in the sense of [[equivariant stable homotopy theory]], yields the concept of \emph{[[equivariant stable cohomotopy]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivariant_hopf_degree_theorem}{}\subsubsection*{{Equivariant Hopf degree theorem}}\label{equivariant_hopf_degree_theorem} \begin{itemize}% \item [[equivariant Hopf degree theorem]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{equivariant_cohomotopy_of__in_rodegree_}{}\subsubsection*{{Equivariant Cohomotopy of $S^V$ in RO-degree $V$}}\label{equivariant_cohomotopy_of__in_rodegree_} As a special case of the [[equivariant Hopf degree theorem]] , we obtain the following: \begin{example} \label{EquivariantHomotopyOfSVInRODegreeV}\hypertarget{EquivariantHomotopyOfSVInRODegreeV}{} \textbf{([[equivariant cohomotopy]] of [[representation sphere]] $S^V$ in [[RO(G)-degree]] $V$)} Let $G \in \mathrm{Grp}_{\mathrm{fin}}$ and $V \in \mathrm{RO}(G)$ with $V^G = 0$. Then the bipointed [[equivariant cohomotopy]] of the [[representation sphere]] $S^V$ in [[RO(G)-degree]] $V$ is the [[Cartesian product]] of one copy of the [[integers]] for each [[isotropy group|isotropy]] subgroup \eqref{IsotropySubgroups} of $G$ in $S^V$ except the full subgroup $G \subset G$ \begin{displaymath} \itexarray{ \pi^V\left( S^V\right)^{\{0,\infty\}/} & \overset{\simeq}{\longrightarrow} & \underset{ { { {H \in \mathrm{Isotr}_{S^V}(G)} \atop {H \neq G} } } }{\prod} \;\; {\vert W_G(H)\vert } \cdot \mathbb{Z} \\ \big[ S^V \overset{c}{\longrightarrow} S^V \big] &\mapsto& \Big( H \mapsto \mathrm{deg} \big( c^H \big) - \mathrm{offs}(c,H) \Big) } \end{displaymath} where on the right \begin{displaymath} \mathrm{deg} \Big( \big( S^V \big)^H \overset{ c^H }{\longrightarrow} \big( S^V \big)^H \Big) \in \mathbb{Z} \end{displaymath} is the [[integer]] [[winding number]] of the underlying [[continuous function]] of $c$ ([[corestriction|co]])[[restriction|restricted]] to $H$-[[fixed points]], and part of the claim is that this is an integer multiple of the order of the [[Weyl group]] $W_G(H)$ up to an offset \begin{displaymath} \mathrm{offs}(f,H) \;\in\; \big\{ 0,1, \cdots, \left\vert W_G(H)\right\vert \big\} \;\subset\; \mathbb{Z} \end{displaymath} which depends in a definite way on the degrees of $c^K$ for all isotropy groups $K \gt H$. \end{example} For \textbf{[[proof]]} see \href{Hopf+degree+theorem#EquivariantHomotopyOfSVInRODegreeV}{here} at \emph{[[equivariant Hopf degree theorem]]}. \begin{example} \label{EquivariantCohomotopyOfRepresentationSphereOfSignRepresentationInThatDegree}\hypertarget{EquivariantCohomotopyOfRepresentationSphereOfSignRepresentationInThatDegree}{} \textbf{([[equivariant cohomotopy]] of $S^{\mathbb{R}_{sgn}}$ in [[RO(G)-degree]] the [[sign representation]] $\mathbb{R}_{sgn}$)} Let $G = \mathbb{Z}_2$ the [[cyclic group of order 2]] and $\mathbb{R}_{sgn} \in RO(\mathbb{Z}_2)$ its 1-dimensional [[sign representation]]. Under equivariant [[stereographic projection]] (\href{representation\+sphere#Construction}{here}) the corresponding [[representation sphere]] $S^{\mathbb{R}_{sgn}}$ is equivalently the [[unit circle]] \begin{displaymath} S^1 \simeq S(\mathbb{R}^2) \end{displaymath} equipped with the $\mathbb{Z}_2$-[[action]] whose [[involution]] element $\sigma$ [[reflection|reflects]] one of the two [[coordinate functions|coordinates]] of the ambient [[Cartesian space]] \begin{displaymath} \sigma \;\colon\; (x_1,x_2) \mapsto (x_1, -x_2) \,. \end{displaymath} Equivalently, if we identify \begin{equation} S^1 \;\simeq\; \mathbb{R}/\mathbb{Z} \label{CircleAsQuaotientOfRByZ}\end{equation} then the involution action is \begin{displaymath} \begin{aligned} \sigma \;\colon\; t \mapsto & \phantom{\sim} 1 - t \\ & \sim \phantom{1} - t \end{aligned} \,. \end{displaymath} This means that the [[fixed point space]] is the [[0-sphere]] \begin{displaymath} \big( S^1\big)^{\mathbb{Z}_2} \;\simeq\; S^0 \end{displaymath} being two antipodal points on the circle, which in the presentation \eqref{CircleAsQuaotientOfRByZ} are labeled $\{0,1/2\} \simeq S^0$. Notice that the map \begin{equation} \itexarray{ S^1 &\overset{n}{\longrightarrow}& S^1 \\ t &\mapsto& n\cdot t } \label{ConstantParameterFunctionFromSignRepresentationSphereToItself}\end{equation} of constant parameter speed and [[winding number]] $n \in \mathbb{N}$ is equivariant for this $\mathbb{Z}_2$-[[action]] on both sides: $\backslash$begin\{center\} $\backslash$begin\{xymatrix\} t $\backslash$ar@\{|-{\tt \symbol{62}}\}r $\backslash$ar@\{|-{\tt \symbol{62}}\}d\emph{\{$\backslash$sigma\} \& n$\backslash$cdot t $\backslash$ar@\{|-{\tt \symbol{62}}\}d{\tt \symbol{94}}\{$\backslash$sigma\} $\backslash$ -t $\backslash$ar@\{|-{\tt \symbol{62}}\}r \& -n $\backslash$cdot t $\backslash$end\{xymatrix\} $\backslash$end\{center\}} Now the restriction of the map $n \cdot (-)\in \mathbb{Z}$ from \eqref{ConstantParameterFunctionFromSignRepresentationSphereToItself} to the [[fixed points]] \begin{displaymath} \itexarray{ S^0 = \left( S^{\mathbb{R}_{sgn}}\right) &\hookrightarrow& S^{\mathbb{R}_{sgn}} \\ {}^{ \mathllap{ \left( \cdot n\right)^{\mathbb{Z}_2} } } \big\downarrow && \big\downarrow^{\mathrlap{\cdot n}} \\ S^0 = \left( S^{\mathbb{R}_{sgn}}\right) &\hookrightarrow& S^{\mathbb{R}_{sgn}} } \end{displaymath} sends (0 to 0 and) $1/2$ to either $1/2$ or to $0$, depending on whether the [[winding number]] is [[odd number|odd]] or [[even number|even]]: \begin{displaymath} \itexarray{ S^0 &\overset{ \left(\cdot n\right)^{\mathbb{Z}_2} }{\longrightarrow}& S^0 \\ 1/2 &\mapsto& \left\{ \itexarray{ 1/2 &\vert& n \;\text{is odd} \\ 0 &\vert& n \text{is even} } \right. } \end{displaymath} Hence if the restriction to the [[fixed locus]] is taken to be the [[identity function|identity]] (bipointed [[equivariant cohomotopy]]) then, in accord with Prop. \ref{EquivariantHomotopyOfSVInRODegreeV} there remains the [[integers]] worth of equivariant [[homotopy classes]], where each integer $k \in \mathbb{Z}$ corresponds to the odd winding integer $1 + 2k$ \begin{displaymath} \itexarray{ \pi^{\mathbb{R}_{sgn}} \left( S^{\mathbb{R}_{sgn}} \right)^{\{0,\infty\}/} &\simeq& 2 \cdot \mathbb{Z} + 1 &\simeq& \mathbb{Z} \\ \left[ \mathbb{R}/\mathbb{Z} \overset{c}{\to} \mathbb{R}/\mathbb{Z} \right]_{{0 \mapsto 0} \atop {1/2 \mapsto 1/2}} &\mapsto& deg(c) &\mapsto& \big( deg(c) - 1\big)/2 } \end{displaymath} \end{example} \begin{example} \label{EquivariantCohomotopyOfRepresentationSphereOfQuaternionsInThatDegree}\hypertarget{EquivariantCohomotopyOfRepresentationSphereOfQuaternionsInThatDegree}{} \textbf{([[equivariant cohomotopy]] of $S^{\mathbb{H}}$ in [[RO(G)-degree]] the [[quaternions]] $\mathbb{H}$)} Let $G \subset SU(2) \simeq S(\mathbb{H})$ be a non-[[trivial group|trivial]] [[finite subgroup of SU(2)]] and let $\mathbb{H} \in RO(G)$ be the [[real vector space]] of [[quaternions]] regarded as a [[linear representation]] of $G$ by left multiplication with unit [[quaternions]]. Then the bi-pointed [[equivariant cohomotopy]] of the [[representation sphere]] $S^{\mathbb{H}}$ in [[RO(G)-degree]] $\mathbb{H}$ is \begin{displaymath} \itexarray{ \pi^{\mathbb{H}} \left( S^{\mathbb{H}} \right)^{\{0,\infty\}/} &\simeq& {\left\vert G\right\vert} \cdot \mathbb{Z} + 1 &\simeq& {\left\vert G\right\vert} \cdot \mathbb{Z} &\simeq& \mathbb{Z} \\ \left[ S^{\mathbb{H}} \overset{c}{\longrightarrow} S^{\mathbb{H}} \right] &\mapsto& deg\left( c^{ \{e\} }\right) &\mapsto& deg\left( c^{ \{e\} }\right) - 1 &\mapsto& \big( deg\left( c^{ \{e\} }\right) - 1 \big)/ {\left\vert G\right\vert} } \end{displaymath} \end{example} \begin{proof} The only [[isotropy groups|isotropy]] [[subgroups]] of the left action of $G$ on $\mathbb{H}$ are the two extreme cases $Isotr_{\mathbb{H}}(G) = \{1, G\} \in Sub(G)$. Hence the only multiplicity that appears in Prop. \ref{EquivariantHomotopyOfSVInRODegreeV} is \begin{displaymath} \left\vert W_G(1)\right\vert \;=\; \left\vert G \right\vert \,. \end{displaymath} and all degrees must differ from that of the class of the [[identity function]] by a multiple of this multiplicity. Finally, the offset of the identity function is clearly $offs\left(id_{S^{\mathbb{H}}},1\right) = deg\left( id_{S^{\mathbb{H}}}\right) = 1$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include flavours of cohomotopy -- table]] \begin{itemize}% \item [[equivariant Hopf degree theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Arthur Wasserman]], section 3 of \emph{Equivariant differential topology}, Topology Vol. 8, pp. 127-150, 1969 (\href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/wasserman.pdf}{pdf}) \item [[Tammo tom Dieck]], section 8.4 of \emph{[[Transformation Groups and Representation Theory]]}, Lecture Notes in Mathematics 766 Springer 1979 \item [[George Peschke]], \emph{Degree of certain equivariant maps into a representation sphere}, Topology and its Applications Volume 59, Issue 2, 30 September 1994, Pages 137-156 () \item Zalman Balanov, \emph{Equivariant hopf theorem}, Nonlinear Analysis: Theory, Methods \& Applications Volume 30, Issue 6, December 1997, Pages 3463-3474 () \item [[James Cruickshank]], \emph{Twisted homotopy theory and the geometric equivariant 1-stem}, Topology and its Applications Volume 129, Issue 3, 1 April 2003, Pages 251-271 () \item Davide L. Ferrario, \emph{On the equivariant Hopf theorem}, \emph{Topology Volume 42, Issue 2, March 2003, Pages 447-465} () \end{itemize} \hypertarget{for_mbrane_charge_quantization}{}\subsubsection*{{For M-brane charge quantization}}\label{for_mbrane_charge_quantization} Discussion of [[M-brane]] [[charge quantization]] in [[equivariant cohomotopy]]: \begin{itemize}% \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]}, Comm. Math. Phys. 2019 (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}) ([[equivariant rational homotopy theory|equivariant]] [[rational Cohomotopy]]) \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) (implying [[RR-field tadpole cancellation]]) \end{itemize} [[!redirects equivariant Cohomotopy]] [[!redirects equivariant cohomotopy theory]] [[!redirects equivariant Cohomotopy theory]] \end{document}