\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant de Rham cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Models}{Models}\dotfill \pageref*{Models} \linebreak \noindent\hyperlink{TheWeilModel}{The Weil model}\dotfill \pageref*{TheWeilModel} \linebreak \noindent\hyperlink{TheCartanModel}{The Cartan model}\dotfill \pageref*{TheCartanModel} \linebreak \noindent\hyperlink{LabelCartanViaHorizontalProjection}{Via horizontal projection of the Weil model}\dotfill \pageref*{LabelCartanViaHorizontalProjection} \linebreak \noindent\hyperlink{CartanModelDirectDefinition}{Direct definition}\dotfill \pageref*{CartanModelDirectDefinition} \linebreak \noindent\hyperlink{EquDeRhamTheorem}{Equivariant de Rham theorem}\dotfill \pageref*{EquDeRhamTheorem} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[equivariant cohomology]]-generalization of [[de Rham cohomology]]. \begin{tabular}{l|l} [[cohomology]]&[[Borel equivariant cohomology\\ \hline [[real cohomology&real]] [[ordinary cohomology]]\\ [[de Rham cohomology]]&[[equivariant de Rham cohomology]]\\ \end{tabular} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Throughout we consider the following setup: \begin{defn} \label{SmoothGManifold}\hypertarget{SmoothGManifold}{} \textbf{([[smooth manifold]] with [[smooth function|smooth]] [[action]] of a [[Lie group]])} Let \begin{enumerate}% \item $X$ be a [[smooth manifold]] with [[de Rham algebra]] denoted $\big( \Omega^\bullet(X), d_{dR} \big)$, \item $G$ a [[Lie group]] with [[Lie algebra]] denoted $\big(\mathfrak{g}, [-,-]\big)$, \item $X \times G \overset{\rho}{\longrightarrow} X$ a [[smooth function|smooth]] [[action]] of $G$ on $X$. \end{enumerate} Often this data is called a \emph{smooth $G$-manifold $X$}, or similar. \end{defn} \hypertarget{Models}{}\subsubsection*{{Models}}\label{Models} Given a smooth $G$-manifold $X$ (Def. \ref{SmoothGManifold}) various [[dg-algebras]] are used to model the corresponding $G$-equivariant de Rham cohomology $X$, known as \begin{itemize}% \item \emph{\hyperlink{TheWeilModel}{the Weil model}} \item \emph{\hyperlink{TheCartanModel}{the Cartan model}} \item \emph{the BRST/Kalkman model} \end{itemize} \hypertarget{TheWeilModel}{}\paragraph*{{The Weil model}}\label{TheWeilModel} Let $\big( W(\mathfrak{g}), d_W \big)$ denote the [[Weil algebra]] of $\mathfrak{g}$. If $\{t_a\}$ is a [[linear basis]] for $\mathfrak{g}$ \begin{equation} \mathfrak{g} \;=\; span\big( \{t_a\} \big) \label{LinearBasisForG}\end{equation} with induced structure constants for the [[Lie bracket]] being $\big\{f_{b c}^a\big\}_{a,b,c}$ \begin{equation} [t_a, t_b] \;=\; f_{a b}^c t^b \wedge t^c \label{StructureConstants}\end{equation} (using the [[Einstein summation convention]] throughout) then the [[Weil algebra]] is the [[dgc-algebra]] explicitly given by [[generators and relations]] as follows: \begin{equation} W(\mathfrak{g}) \;\coloneqq\; \mathbb{R}\big[ \{ \underset { deg = 1 } { \underbrace{ t^a } } \}_a, \{ \underset { deg = 2 } { \underbrace{ r^a } } \}_a \big] \Big/ \left( \begin{aligned} d_W \, t^a & = - \tfrac{1}{2}f^a_{b c} t^b \wedge t^c + r^a \\ d_W \, r^a & = f^a_{b c} t^b \wedge r^c \end{aligned} \right) \label{ExplicitWeilAlgebra}\end{equation} Now consider the [[tensor product of algebras|tensor product of]] [[dgc-algebras]] of the [[de Rham algebra]] of $X$ with the [[Weil algebra]] of $\mathfrak{g}$ \begin{equation} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}), \, d_{dR} + d_W \Big) \,. \label{TensorProductOfdeRhamAlgebraWithWeilAlgebra}\end{equation} On this consider the following joint [[Cartan calculus]] operations: for each fKalbasis element $t_a$ \eqref{LinearBasisForG} a graded [[derivation]] of degree -1 (contraction) \begin{equation} \iota_a \;\colon\; \Big( \Omega \big( X \big) \otimes W(\mathfrak{g}) \Big)^\bullet \longrightarrow \Big( \Omega \big( X \big) \otimes W(\mathfrak{g}) \Big)^{\bullet - 1 } \label{WeilModelContractionOperation}\end{equation} and a graded derivation of degree 0 (generalized [[Lie derivative]]) \begin{equation} \mathcal{L}_a \;\colon\; \Big( \Omega \big( X \big) \otimes W(\mathfrak{g}) \Big)^\bullet \longrightarrow \Big( \Omega \big( X \big) \otimes W(\mathfrak{g}) \Big)^{\bullet} \label{WeilModelLieDerivative}\end{equation} defined on $\omega \in \Omega^\bullet(X)$ any [[differential form]] and $t^a, r^a$ as in \eqref{ExplicitWeilAlgebra} as follows \begin{equation} \iota_a \;\colon\; \left\{ \begin{aligned} \omega & \mapsto \iota_{v^a} \omega \\ t^b &\mapsto \delta^a_b \\ r^b & \mapsto 0 \end{aligned} \right. \label{WeilModelContractionOnGenerators}\end{equation} and \begin{equation} \mathcal{L}_a \;\colon\; \left\{ \begin{aligned} \omega & \mapsto \mathcal{L}_{v^a} \omega \\ t^b &\mapsto f_{a c}^b t^c \\ r^b & \mapsto f_{a c}^b r^c \end{aligned} \right. \label{WeilModelLieDerivativeOnGenerators}\end{equation} where \begin{displaymath} v^a \;\colon\; X \overset{ \big( (e,t_a), 0 \big) }{\hookrightarrow} T G \times T X \simeq T ( G \times X ) \overset{ d \rho } {\longrightarrow} T X \end{displaymath} is the [[vector field]] on $X$ which is the [[derivative]] of the [[action]] $\rho$ of $G$ along the [[Lie algebra]]-element $t_a \in \mathfrak{g} \simeq T_e G$, and where $\iota_{v^a}$ is ordinary contraction of [[vector fields]] into [[differential forms]] and $\mathcal{L}_{v^a} = [d_{dR}, \iota-{v^a}]$ is [[Lie derivative]] of differential forms. With this one defines the sub-[[chain complex]] of \emph{[[horizontal differential forms]]} as the joint [[kernel]] of the contraction operators \eqref{WeilModelContractionOperation} \begin{equation} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{hor} \overset{ ker\big( \{\iota_a\}_a \big) }{\hookrightarrow} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big) \label{WeilModelHorizontalForms}\end{equation} (this subspace need not be preserved by the differential, but the following further subspace is) and the further sub-[[dgc-algebra]] of \emph{[[basic differential forms]]}, which are in addition in the [[kernel]] of the [[Lie derivatives]] \eqref{WeilModelLieDerivative} \begin{equation} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{basic} \overset{ ker\big( \{\mathcal{L}_a\}_a \big) }{\hookrightarrow} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{hor} \overset{ ker\big( \{\iota_a\}_a \big) }{\hookrightarrow} \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big) \label{WeilModelBasicForms}\end{equation} Since the [[differential]] $d_{dR} + d_W$ \eqref{TensorProductOfdeRhamAlgebraWithWeilAlgebra} graded-commutes with $\iota_a$ to $\mathcal{L}_a$ (by definition and by [[Cartan's magic formula]]) and hence graded-commutes with the [[Lie derivative]] $\mathcal{L}_a$ itself, it restricts to this joint [[kernel]], thus defining a sub-[[dgc-algebra]] (just no longer [[semi-free dg-algebra|semi-free]], in generaL) \begin{equation} \Big( \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{basic} , d_{dR} + d_W \Big) \label{WeilModel}\end{equation} This [[dgc-algebra]] is called the \emph{Weil model} for $G$-equivariant de Rham cohomology of $X$. (see \hyperlink{AtiyahBott84}{Atiyah-Bott 84}, \hyperlink{MathaiQuillen86}{Mathai-Quillen 86, Sec. 5} \hyperlink{Kalkman93}{Kalkman 93, Sec.2.1}, \hyperlink{Miettinen96}{Miettinen 96, Sec. 2}). \hypertarget{TheCartanModel}{}\paragraph*{{The Cartan model}}\label{TheCartanModel} The Cartan model follows from the Weil model \hyperlink{TheWeilModel}{above} by algebraically solving the horizontality constraint \eqref{WeilModelHorizontalForms}. This we discuss first \hyperlink{LabelCartanViaHorizontalProjection}{below}. Then we summarize state the resulting dgc-algebra further \hyperlink{CartanModelDirectDefinition}{below}. Reviews include (\hyperlink{MathaiQuillen86}{Mathai-Quillen 86, Sec. 5}, \hyperlink{Kalkman93}{Kalkman 93, section 2.2}) \hypertarget{LabelCartanViaHorizontalProjection}{}\paragraph*{{Via horizontal projection of the Weil model}}\label{LabelCartanViaHorizontalProjection} The \emph{Cartan model} arises form the Weil model \hyperlink{TheWeilModel}{above} by the observation that the first of the two constraints defining [[basic differential forms]] \eqref{WeilModelBasicForms}, namely the constrain for [[horizontal differential forms]] \eqref{WeilModelHorizontalForms}, may be uniformly solved: \begin{lemma} \label{ProjectionOntoHorizontalDifferentialForms}\hypertarget{ProjectionOntoHorizontalDifferentialForms}{} \textbf{([[projection operator]] onto [[horizontal differential forms]])} Consider the [[normal ordering|normal ordered]] [[exponential]] of minus the sum of the contraction [[derivations]] \eqref{WeilModelContractionOperation} followed by wedge product with the corresponding degree-1 generator \eqref{ExplicitWeilAlgebra} \begin{equation} : \exp \big( - \theta^a \iota_a \big) : \;=\; 1 - \underset{a}{\sum} \theta^a \iota_a + \tfrac{1}{2} \underset{a,b}{\sum} \theta^a \theta^b \iota_b \iota_a - \cdots \;\;\colon\;\; \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \longrightarrow \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \label{ExponentialProjectionOperator}\end{equation} We have: \begin{enumerate}% \item This is the [[projection operator]] onto the sub-space of [[horizontal differential forms]] \eqref{WeilModelHorizontalForms}. \item The restriction of this projector to $\Omega^\bullet\big(X \big)$ is a [[graded algebra]]-[[isomorphism]] onto the horizontal forms in $CE(\mathfrak{g}) \otimes \Omega^\bullet\big(X \big)$ \begin{displaymath} \Omega^\bullet\big(X \big) \underoverset{\simeq}{ :\exp\big( - \theta^a \iota_a \big): }{\longrightarrow} \big( CE(\mathfrak{g}) \otimes \Omega^\bullet(X) \big)_{hor} \end{displaymath} \item Hence the further [[tensor product]] with $\mathbb{R}\big[ \{r^a\}_a \big]$ is an algebra isomorphism onto the full subspace of [[horizontal differential forms]] \eqref{WeilModelHorizontalForms} \begin{displaymath} \mathbb{R}\big[ \{r^a\}_a \big] \otimes \Omega^\bullet\big(X \big) \underoverset{\simeq}{ :\exp\big( - \theta^a \iota_a \big): }{ \longrightarrow } \big( CE(\mathfrak{g}) \otimes \Omega^\bullet(X) \big)_{hor} \end{displaymath} \item The operator commutes with the [[Lie derivative]] \eqref{WeilModelLieDerivative} and hence restricts to an isomorphism onto the sub-[[dgc-algebra]] of [[basic differential forms]] \eqref{WeilModelBasicForms} \begin{equation} \big( \mathbb{R}\big[ \{r^a\}_a \big] \otimes \Omega^\bullet\big(X \big) \big)^G \underoverset{\simeq}{ \;\;\; :\exp\big( - \theta^a \iota_a \big): \;\;\; }{ \longrightarrow } \big( CE(\mathfrak{g}) \otimes \Omega^\bullet(X) \big)_{bas} \label{IsomorphisamCartanToWeilModel}\end{equation} \item The [[inverse function|inverse]] of \eqref{IsomorphisamCartanToWeilModel} \begin{equation} \big( \mathbb{R}\big[ \{r^a\}_a \big] \otimes \Omega^\bullet\big(X \big) \big)^G \underoverset{\simeq}{ \;\;\; \epsilon \;\;\; }{ \longleftarrow } \big( CE(\mathfrak{g}) \otimes \Omega^\bullet(X) \big)_{bas} \label{IsomorphismWeilToCartanModel}\end{equation} is the [[algebra homomorphism]] given setting all generaotors $\theta^a$ in \eqref{ExplicitWeilAlgebra} to zero \begin{equation} \epsilon \;\colon\; \left\{ \itexarray{ \omega & \mapsto \omega \\ \theta^a & \mapsto 0 \\ r^a & \mapsto r^a } \right. \label{WeilAugmentationOverCartan}\end{equation} \item The induced [[differential]] on the left, which hence makes $: \exp\big( - \theta^a \iota_a\big) :$ a [[dgc-algebra]]-[[isomorphism]] and hence in particular a [[quasi-isomorphism]] is \begin{equation} \epsilon \circ \big( d_{dR} + d_W\big) \circ : \exp\big( -\theta^a \iota_a \big) : \;=\; d_{dR} + r^a \iota_{v^a} \,. \label{InducedDifferentialOnCartanModel}\end{equation} \end{enumerate} \end{lemma} This is the \emph{Mathai-Quillen isomorphism} (\hyperlink{MathaiQuillen86}{Mathai-Quillen 86, around (5.9)}). \begin{proof} Observe that the operator \eqref{ExponentialProjectionOperator} is equal to the product \begin{displaymath} : \exp \big( - \theta^a \iota_a \big) : \;=\; \big( id - \theta^1 \iota_1 \big) \big( id - \theta^2 \iota_2 \big) \cdots \big( id - \theta^{dim(\mathfrak{g})} \iota_{dim(\mathfrak{g})} \big) \,. \end{displaymath} Here all factors commute with each other, and each factor is itself a [[projection operator]], with [[image]] the [[kernel]] of the corresponding single contraction operator, e.g. \begin{displaymath} im \big( 1 - \theta^1 \iota_1 \big) \;\simeq\; ker\big( \iota_1\big) \end{displaymath} etc. Hence the joint image is the joint kernel of the contraction operators. It is clear by inspection that $\epsilon$ in \eqref{IsomorphismWeilToCartanModel} is a [[linear map|linear]] [[inverse function|inverse]] to $: \exp\big( - \theta^a \iota_a\big) :$. Therefore, since $\epsilon$ is manifestly an [[algebra homomorphism]], so is $: \exp\big( - \theta^a \iota_a\big) :$. This implies that the induced differential \eqref{InducedDifferentialOnCartanModel} is a graded [[derivation]] and hence that it may be identified by its action on generators. Direct inspection indeed yields for all generators $r^a$ \begin{displaymath} \begin{aligned} \epsilon \circ \big( d_{dR} + d_W\big) \circ : \exp\big( -\theta^a \iota_a \big) : \big( r^a \big) & = 0 \\ & = \big( d_{dR} + r^a \iota_{v^a} \big) ( r^a ) \end{aligned} \end{displaymath} and for all differential forms $\omega \in \Omega^\bullet\big( X \big)$: \begin{displaymath} \begin{aligned} \epsilon \circ \big( d_{dR} + d_W\big) \circ : \exp\big( -\theta^a \iota_a \big) : \big( \omega \big) & = \epsilon \circ \big( d_{dR} + d_W\big) \big( \omega - \theta^a \iota_{v^a} \omega + \cdots \big) \\ & = \epsilon \circ \big( d_{dR} \omega + \underset{a}{\sum} \theta^a d_{dR} \iota_{v^a} \omega + \big( r^a - \tfrac{1}{2}f^a_{b c} t^b \wedge t^c \big) \iota_{v^a} \omega + \cdots \big) \\ & = d_{dR} \iota_{v^a} ( \omega) + r^a \iota_{v^a} (\omega) \end{aligned} \end{displaymath} because $\epsilon$ annihilates, by \eqref{WeilAugmentationOverCartan}, all summands containing a $\theta^a$-factor. \end{proof} The left hand side [[graded algebra]] of the isomorphism \eqref{IsomorphisamCartanToWeilModel} equipped with the induced differential \eqref{InducedDifferentialOnCartanModel} is called the \emph{Cartan model}, and that isomorphism exhibits it as equivalent to the Weil model: \begin{equation} \itexarray{ \Big( \Big( \Omega^\bullet\big(X \big) \otimes \mathbb{R}\big[ \{r^a\}_a \big] \Big)^G \,,\, d_{dR} + r^a \iota_{v^a} \Big) & \underoverset{\simeq}{ : \exp\big( - \theta^a \iota_a \big) : }{\longrightarrow} & \Big( \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{basic} , d_{dR} + d_W \Big) \\ \text{Cartan model} && \text{Weil model} } \label{QuasiIsoFromCartanToWeilModel}\end{equation} This statement is originally due to \hyperlink{Cartan50}{Cartan 50, Sec. 6}. $\backslash$linebreak In summary, the Cartan model is explicitly the following dgc-algebra: \hypertarget{CartanModelDirectDefinition}{}\paragraph*{{Direct definition}}\label{CartanModelDirectDefinition} Write \begin{displaymath} (\Omega^\bullet(G, \mathfrak{g}^\ast[1])^G \hookrightarrow \Omega(G, \mathfrak{g}^\ast[1]) \end{displaymath} for the $G$-[[invariant differential forms]] on $G$ with [[coefficients]] in the [[linear dual]] of the Lie algebra $\mathfrak{g}$, shifted up in degree. So for $\{F^a\}$ a dual [[basis]], a general element of this space in degree $2 p + q$ is of the form \begin{displaymath} \omega \;=\; F^{a_1} \wedge \cdots F^{a_p} \wedge \omega_{a_1,\cdots ,a_q} \,, \end{displaymath} where $\omega_{\cdots}$ are [[differential n-form|differential q-forms]], such that for each $t_a \in \mathfrak{g}$ the [[Lie derivative]] of these forms satisfies \begin{displaymath} \mathcal{L}_{v^a} \omega_{a_1, a_2 \cdots , a_p} = f_{a a_1}{}^b \omega_{b , a_2, \cdots , a_p} + f_{a a_2}^{}^b \omega_{a_1 , b, \cdots , a_p} + \cdots \,, \end{displaymath} where $\{f_{a b}{}^b\}$ are the structure constants of $\mathfrak{g}$ \eqref{StructureConstants}. Equip this [[graded vector space]] $\Omega^\bullet(G, \mathfrak{h}^\ast[1])^G$ with a [[differential]] $d$ by \begin{displaymath} d \colon \omega \mapsto d_{dR}\omega - F^a \iota_{v^a} \omega \end{displaymath} (e.g. \hyperlink{Kalkman93}{Kalkman 93 (1.15)}). The resulting [[dgc-algebra]] $(\Omega^\bullet(G,\mathfrak{g}^\ast[1])^G, d)$ is the \emph{Cartan model} for $G$-equivariant de Rham cohomology on $X$. $\backslash$linebreak \hypertarget{EquDeRhamTheorem}{}\subsubsection*{{Equivariant de Rham theorem}}\label{EquDeRhamTheorem} The point of the \hyperlink{Models}{above} dgc-algebra models is that, under suitable conditions, their [[cochain cohomology]] computes the [[real cohomology]] of the [[homotopy type]] of the [[homotopy quotient]] $X \sslash H$, which, as an actual [[topological space]], may be presented by the [[Borel construction]] $X \times_G E G$, hence the [[Borel equivariant cohomology|Borel equivariant]] [[de Rham cohomology]] of $X$. This is the [[equivariant cohomology]]-generalization of the plain [[de Rham theorem]]: \begin{prop} \label{EquivariantDeRhamTheorem}\hypertarget{EquivariantDeRhamTheorem}{} \textbf{([[equivariant de Rham theorem]])} Let \begin{enumerate}% \item $G$ be a [[Lie group]] which is \begin{enumerate}% \item [[compact Lie group|compact]]; \item [[connected topological space|connected]]; \end{enumerate} \item $X$ be a smooth $G$-manifold (Def. \ref{SmoothGManifold}). \end{enumerate} Then the [[cochain cohomology]] of (the [[cochain complex]] underlying) the Weil model [[dgc-algebra]] \eqref{WeilModel}, and hence, by Lemma \ref{ProjectionOntoHorizontalDifferentialForms}, also of the Cartan model [[dgc-algebra]] \eqref{QuasiIsoFromCartanToWeilModel}. is [[isomorphism|isomorphic]] to the [[real cohomology]] of the [[homotopy quotient]] $X \!\sslash\! G$ of the action on (the [[topological space]] underlying) $X$ by the ([[topological group]] underlying) $G$, hence in particular of the [[Borel construction]] $X \times_G E G \simeq X \!\sslash\! G$: \begin{displaymath} \itexarray{ \text{Cartan model cohomology} \\ H^\bullet \Big( \Big( \Omega^\bullet\big(X \big) \otimes \mathbb{R}\big[ \{r^a\}_a \big] \Big)^G \,,\, d_{dR} + r^a \iota_{v^a} \Big) \\ {}^{\simeq} \Big\downarrow {}^{ H^\bullet\big( : \exp\big( - \theta^a \iota_a \big) : \big) } \\ H^\bullet \Big( \Big( \Omega^\bullet \big( X \big) \otimes W(\mathfrak{g}) \Big)_{basic} , d_{dR} + d_W \Big) &\underoverset{\simeq}{\;\;\;\;\;\;\;\;\;\;\;\;\;}{\longrightarrow}& H^\bullet \big( X \!\!\sslash\!\! G \,,\, \mathbb{R} \big) \\ \text{Weil model cohomology} && \mathclap{ \text{equivariant real cohomology} } } \end{displaymath} \end{prop} (e.g \hyperlink{Meinrenken06}{Meinrenken 06, Theorem 6.1}) \begin{proof} Recall that the [[product topological space]] $X \times E G$ of $X$ with the total space $E G$ of the [[universal principal bundle]], equipped with the [[diagonal action]] by the group $G$, constitutes a [[resolution]] of $X$ as a [[topological G-space]], in that the [[projection]] \begin{displaymath} X \times E G \underoverset{\simeq_{whe}}{ \;\;\; pr_1 \;\;\; }{\longrightarrow} X \end{displaymath} is a $G$-[[equivariant function]] which is a [[weak homotopy equivalence]] (since $E G$ is a [[weakly contractible topological space]]) and the [[diagonal action|diagonal]] $G$-[[action]] on $X \times E G$ is [[free action|free]] (since the action on $E G$ is). Therefore the [[homotopy quotient]] of $X$ by $G$ is presented by the ordinary [[quotient space]] of $X \times E G$ by $G$, which is what is called the [[Borel construction]] \begin{displaymath} X \times_G E G \;\coloneqq\; \big( X \times E G \big)/G \;\simeq_{whe}\; X \sslash G \end{displaymath} The point now is that the Weil model \eqref{WeilModel} for equivariant cohomology is exactly the analog of the Borel construction in terms of dgc-algebraic [[rational homotopy theory]]-type models in [[real cohomology]]: By the ordinary [[de Rham theorem]] the image of the smooth manifold $X$ in dgc-algebra [[rational homotopy theory]] (with [[real number]]-[[coefficients]]) is given by the [[de Rham algebra]] $\Omega^\bullet(X)$, and the image of $E G$ is the [[Weil algebra]] $W(\mathfrak{g})$: The [[contractible topological space|contractability]] of $E G$ corresponds to the free propery (\href{Weil+algebra#FreeProperty}{here}) of the Weil algebra, and the $G$-[[action]] on $E G$ corresponds to the canonical $\mathfrak{g}$-[[Cartan calculus]] on $W(\mathfrak{g})$. Since for a [[free action]] the invariant forms are the [[basic differential forms]], this shows that/how the Weil model is the image of the [[Borel construction]] in dgc-algebraic [[rational homotopy theory]]: $\backslash$begin\{xymatrix\} \& X $\backslash$times E G $\backslash$ar@(ul,ur){\tt \symbol{94}}G $\backslash$ard{\tt \symbol{94}}-\{ q \} \& $\backslash$Omega{\tt \symbol{94}}$\backslash$bullet( X ) $\backslash$otimes W(g) $\backslash$ar@(ur,ul)\_\{ g \} $\backslash$ar@\{{\tt \symbol{60}}-{\tt \symbol{94}}\{)\}\}d{\tt \symbol{94}}-\{ q{\tt \symbol{94}}$\backslash$ast \} $\backslash$ $\backslash$; X // G $\backslash$ar@\{\}r|-\{ $\backslash$simeq\_\{$\backslash$mathrm\{whe\}\} \} \&\newline $\backslash$big( X $\backslash$times E G $\backslash$big)/G \& $\backslash$big( $\backslash$Omega{\tt \symbol{94}}$\backslash$bullet( X ) $\backslash$otimes W(g) $\backslash$big)\_\{$\backslash$mathrm\{basic\}\} $\backslash$ar@\{{\tt \symbol{60}}-\}r{\tt \symbol{94}}-\{ :$\backslash$exp$\backslash$big( t{\tt \symbol{94}}a $\backslash$iota\_a$\backslash$big): \}\_-\{$\backslash$simeq\} \& $\backslash$big( $\backslash$Omega{\tt \symbol{94}}$\backslash$bullet( X )$\backslash$bigr{\tt \symbol{94}}a $\backslash$big $\backslash$big){\tt \symbol{94}}G $\backslash$ \& $\backslash$mbox\{Borel construction\} \& $\backslash$mbox\{Weil model\} \& $\backslash$mbox\{Cartan model\} $\backslash$end\{xymatrix\} $\,$ \end{proof} \begin{remark} \label{}\hypertarget{}{} A generalization of the [[equivariant de Rham theorem]] to non-[[compact Lie group|compact]] Lie groups exists (\hyperlink{Getzler94}{Getzler 94}) but this uses the [[simplicial de Rham complex]] of the [[action groupoid]] $X \sslash G$ (\hyperlink{BottShulmanStasheff76}{Bott-Shulman-Stasheff 76}) and is thus a fair bit more complicated, computationally. \end{remark} $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[gauged WZW model]] \item [[action Lie algebroid]], [[BRST complex]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The Cartan model for equivariant de Rham cohomology is originally due to \begin{itemize}% \item [[Henri Cartan]], \emph{La transgression dans un groupe de Lie et dans un espace fibré principal}, Colloque de topologie (espaces fibrés). Bruxelles, 1950 \end{itemize} Review includes \begin{itemize}% \item [[Eckhard Meinrenken]], \emph{Equivariant cohomology and the Cartan model}, in: \emph{Encyclopedia of Mathematical Physics}, Pages 242-250 Academic Press 2006 (\href{http://www.math.toronto.edu/mein/research/enc.pdf}{pdf}, \href{https://doi.org/10.1016/B0-12-512666-2/00344-8}{doi:10.1016/B0-12-512666-2/00344-8}) \item Oliver Goertsches, Leopold Zoller, \emph{Equivariant de Rham Cohomology: Theory and Applications}, São Paulo J. Math. Sci. (2019) (\href{https://arxiv.org/abs/1812.09511}{arXiv:1812.09511}, \href{https://doi.org/10.1007/s40863-019-00129-4}{doi:10.1007/s40863-019-00129-4}) \end{itemize} See also \begin{itemize}% \item Camilo Arias Abad, [[Marius Crainic]], Sec. 1 of: \emph{The Weil algebra and the Van Est isomorphism} (\href{https://arxiv.org/abs/0901.0322}{arXiv:0901.0322}) \end{itemize} Early discussion of the Weil model includes \begin{itemize}% \item [[Michael Atiyah]], [[Raoul Bott]], \emph{The moment map and equivariant cohomology}, Topology 23, 1 (1984) (, \href{https://www.math.stonybrook.edu/~mmovshev/MAT570Spring2008/BOOKS/atiyahbott_moment.pdf}{pdf}) \end{itemize} The slick proof of the equivalence between the Weil model and the the Cartan model via the \emph{Mathai-Quillen isomorphism} (Lemma \ref{ProjectionOntoHorizontalDifferentialForms}) is due to \begin{itemize}% \item [[Varghese Mathai]], [[Daniel Quillen]], Sec. 5 of \emph{Superconnections, Thom classes and equivariant differential forms}, Topology 25, 85 (1986) () \end{itemize} A review of the Weil model and the Cartan model and the introduction of the ``BRST model'' (Kalkman model) is in \begin{itemize}% \item Jaap Kalkman, \emph{BRST model applied to symplectic geometry}, Ph.D. Thesis, Utrecht, 1993 (\href{https://arxiv.org/abs/hep-th/9308132}{arXiv:hep-th/9308132}, \href{http://cds.cern.ch/record/568522}{cds:9308132}, \href{http://projecteuclid.org/euclid.cmp/1104252784}{euclid:1104252784}) (original arXiv pdf broken) \end{itemize} Generalization of the [[equivariant de Rham theorem]] to non-compact Lie groups is due to \begin{itemize}% \item [[Ezra Getzler]], \emph{The Equivariant Chern Character for Non-compact Lie Groups}, Advances in Mathematics Volume 109, Issue 1, November 1994, Pages 88-107 (\href{https://doi.org/10.1006/aima.1994.1081}{doi:10.1006/aima.1994.1081}) \end{itemize} based on the [[simplicial de Rham complex]] \begin{itemize}% \item [[Raoul Bott]], [[Herbert Shulman]], [[Jim Stasheff]], \emph{On the de Rham theory of certain classifying spaces}, Advances in Mathematics, Volume 20, Issue 1, April 1976, Pages 43-56 (, \href{https://core.ac.uk/download/pdf/82496263.pdf}{pdf}) \end{itemize} see also \begin{itemize}% \item Hugo Garcia-Compean, Pablo Paniagua, [[Bernardo Uribe]], \emph{Equivariant extensions of differential forms for non-compact Lie groups} (\href{https://arxiv.org/abs/1304.3226}{arXiv:1304.3226}) \end{itemize} Some related discussion for equivariant [[Riemannian geometry]] in \begin{itemize}% \item [[Peter Michor]], \emph{Basic Differential Forms for Actions of Lie Groups}, Proceedings of the American Mathematical Society Vol. 124, No. 5 (May, 1996), pp. 1633-1642 (\href{ttps://www.jstor.org/stable/2161476}{jstor:}) \end{itemize} Discussion in the broader context of [[equivariant cohomology|equivariant]] [[differential cohomology]] is in \begin{itemize}% \item Andreas Kübel, [[Andreas Thom]], \emph{Equivariant Differential Cohomology}, Transactions of the American Mathematical Society (2018) (\href{https://arxiv.org/abs/1510.06392}{arXiv:1510.06392}) \end{itemize} Discussion in the context of the [[gauged WZW model]] includes \begin{itemize}% \item [[Edward Witten]], appendix of \emph{On holomorphic factorization of WZW and coset models}, Comm. Math. Phys. Volume 144, Number 1 (1992), 189-212. (\href{http://projecteuclid.org/euclid.cmp/1104249222}{EUCLID}) \item [[José Figueroa-O'Farrill]], S Stanciu, \emph{Gauged Wess-Zumino terms and Equivariant Cohomology}, Phys.Lett. B341 (1994) 153-159 (\href{http://arxiv.org/abs/hep-th/9407196}{arXiv:hep-th/9407196}) \item [[José de Azcárraga]], J. C. Perez Bueno, \emph{On the general structure of gauged Wess-Zumino-Witten terms} (\href{http://arxiv.org/abs/hep-th/9802192}{arXiv:hep-th/9802192}) \end{itemize} Discussion in view of [[supersymmetry]]: \begin{itemize}% \item Mauri Miettinen, \emph{Weil Algebras and Supersymmetry} (\href{https://arxiv.org/abs/hep-th/9612209}{arXiv:hep-th/9612209}, \href{http://cds.cern.ch/record/317377}{cds:317377}, \href{http://inspirehep.net/record/427720}{spire:427720}) \item [[Victor Guillemin]], [[Shlomo Sternberg]], \emph{Supersymmetry and equivariant de Rham theory}, Springer, (1999) (\href{https://link.springer.com/book/10.1007/978-3-662-03992-2}{doi:10.1007/978-3-662-03992-2}) \end{itemize} [[!redirects Weil model]] [[!redirects Weil models]] [[!redirects Cartan model]] [[!redirects Cartan models]] [[!redirects Kalkman model]] [[!redirects Kalkman models]] [[!redirects Weil model for equivariant cohomology]] [[!redirects Cartan model for equivariant cohomology]] [[!redirects Kalkman model for equivariant cohomology]] [[!redirects equivariant de Rham theorem]] \end{document}