\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant homotopy group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{via_genuine_spectra}{Via genuine $G$-spectra}\dotfill \pageref*{via_genuine_spectra} \linebreak \noindent\hyperlink{via_orthogonal_spectra_and_equivariant_maps}{Via orthogonal spectra and $G$-equivariant maps}\dotfill \pageref*{via_orthogonal_spectra_and_equivariant_maps} \linebreak \noindent\hyperlink{via_fixed_point_spectra}{Via fixed point spectra}\dotfill \pageref*{via_fixed_point_spectra} \linebreak \noindent\hyperlink{ViaEquivariantCohomologyOfThePoint}{Via equivariant cohomology of the point}\dotfill \pageref*{ViaEquivariantCohomologyOfThePoint} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_equivariant_suspension_spectra}{Of equivariant suspension spectra}\dotfill \pageref*{of_equivariant_suspension_spectra} \linebreak \noindent\hyperlink{of_the_equivariant_sphere_spectrum}{Of the equivariant sphere spectrum}\dotfill \pageref*{of_the_equivariant_sphere_spectrum} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_mackey_functors}{Relation to Mackey functors}\dotfill \pageref*{relation_to_mackey_functors} \linebreak \noindent\hyperlink{equivariant_stable_whitehead_theorem}{Equivariant stable Whitehead theorem}\dotfill \pageref*{equivariant_stable_whitehead_theorem} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the concept of [[homotopy group]] from [[homotopy theory]] and [[stable homotopy theory]] to [[equivariant homotopy theory]] and [[equivariant stable homotopy theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{abstractly}{}\subsubsection*{{Abstractly}}\label{abstractly} For $X$ a [[pointed topological space|pointed]] [[topological G-space]] and $H \subset G$ a closed [[subgroup]], the $n$th \emph{unstable} $H$-equivariant homotopy group of $X$ is simply the ordinary $n$-th [[homotopy group]] of the $H$-[[fixed point]] space $X^H$: \begin{displaymath} \pi_n^H(X) \coloneqq \pi_n(X^H) \,. \end{displaymath} With $G/H$ denoting the [[quotient space]], this is equivalently the $G$-[[homotopy classes]] of $G$-equivariant [[continuous functions]] from the [[smash product]] $S^n \wedge G/H_+$ to $X$: \begin{displaymath} \pi_n^H(X) \simeq [G/H_+ \wedge S^n, X]^G \,. \end{displaymath} In this form the definition directly generalizes to [[G-spectra]] and hence to stable equivariant homotopy groups: for $E$ a [[G-spectrum]], then \begin{displaymath} \pi_n^H(X) \simeq [G/H_+ \wedge \Sigma^\infty S^n, X]^G \,. \end{displaymath} where now $\Sigma^\infty S^n \simeq \Sigma^n \mathbb{S}$ is the [[suspension spectrum]] of the [[n-sphere]] and $[-,-]^G$ now denotes the [[hom functor]] in the [[equivariant stable homotopy category]]. \hypertarget{via_genuine_spectra}{}\subsubsection*{{Via genuine $G$-spectra}}\label{via_genuine_spectra} Consider [[genuine G-spectra]] modeled on a [[G-universe]] $U$. For a \emph{finite} based [[G-CW complex]] $X$ and base [[topological G-space]] $Y$, write \begin{displaymath} \{X,Y\}_G = [\Sigma^\infty_G X, \Sigma^\infty_G Y] \coloneqq \underset{\longrightarrow}{\lim}_{V \subset U} [\Sigma^V X, \Sigma^V Y]_G \end{displaymath} for the [[colimit]] over $G$-[[homotopy classes]] of maps between [[suspensions]] $\Sigma^V X \coloneqq S^V \wedge X$, where $V$ runs through the indexing spaces in the universe and $S^V$ denotes its [[representation sphere]]. (\hyperlink{May96}{May 96, IX.2 def. 2.1}) The equivariant stable homotopy groups of $X$ are \begin{displaymath} \pi_V^G(\Sigma^\infty_G X) \coloneqq \{S^V,X\}_G \,. \end{displaymath} (\hyperlink{May96}{May 96, IX.2 remark 2.4}) And for subgroups $H \subset G$ \begin{displaymath} \pi_V^H(\Sigma^\infty_G X) \coloneqq \{G/H_+ \wedge S^V,X\}_G \end{displaymath} (\hyperlink{GreenleesMay95}{Greenlees-May 95, p. 11}) \hypertarget{via_orthogonal_spectra_and_equivariant_maps}{}\subsubsection*{{Via orthogonal spectra and $G$-equivariant maps}}\label{via_orthogonal_spectra_and_equivariant_maps} Let $G$ be a [[finite group]]. For $X$ a $G$-[[equivariant spectrum]] modeled as an [[orthogonal spectrum]] with $G$-[[action]], then for $k \in \mathbb{N}$ the $k$th equivariant homotopy group of $X$ is the [[colimit]] \begin{displaymath} \pi_k^G(X) \coloneqq \underset{\longrightarrow_{\mathrlap{n}}}{\lim} [S^{n \rho_G}, (\Omega^k X)(n \rho_G)]_H \,, \end{displaymath} where \begin{itemize}% \item $\rho_G$ denotes the [[fundamental representation]] of $G$ \item $n \rho_G = (\rho_G)^{\oplus_n}$; \item $S^{n \rho_G}$ is its [[representation sphere]]; \item $X(n \rho_G)$ is the value of $X$ in [[RO(G)-degree]] $n\rho_G$; \item $[-,-]_G$ is the set of [[homotopy classes]] of $G$-equivariant maps of pointed [[topological G-spaces]]. \end{itemize} (e.g. \hyperlink{Schwede15}{Schwede 15, section 3}) More generally for $H \hookrightarrow G$ a [[subgroup]] then one writes $\pi_\bullet^H(X)$ for the $H$-equivariant subgroups of $X$ with $X$ regarded now as an $H$-[[equivariant spectrum]], via restriction of the action. (e.g. \hyperlink{Schwede15}{Schwede 15, p. 16}) \hypertarget{via_fixed_point_spectra}{}\subsubsection*{{Via fixed point spectra}}\label{via_fixed_point_spectra} Equivalently, the $k$th $G$-equivariant homotopy group of a $G$-equivariant spectrum $E$ is the plain $k$th [[stable homotopy group]] of its [[fixed point spectrum]] $F^G E$ \begin{equation} \pi_k^G(E) \simeq \pi_k(F^G E) \,. \label{ViaFixedPointSpectra}\end{equation} (e.g. \hyperlink{Schwede15}{Schwede 15, prop. 7.2}) \hypertarget{ViaEquivariantCohomologyOfThePoint}{}\subsubsection*{{Via equivariant cohomology of the point}}\label{ViaEquivariantCohomologyOfThePoint} The identification \eqref{ViaFixedPointSpectra} in turn is the [[equivariant cohomology]] of the point, \begin{displaymath} E^{-k}_G(\ast) \;\coloneqq\; \left[ \epsilon^\sharp \Sigma^k \mathbb{S} , E\right]_G \;\simeq\; \left[ \Sigma^k \mathbb{S}, F^G E \right] \;\simeq\; \pi_k(F^G E) \end{displaymath} due to the [[base change]] [[adjunction]] \begin{displaymath} G Spectra \underoverset { \underset{ F^G }{\longrightarrow} } {\overset{ \epsilon^\sharp }{\longleftarrow}} { \phantom{AA} \bot \phantom{AA} } Spectra \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_equivariant_suspension_spectra}{}\subsubsection*{{Of equivariant suspension spectra}}\label{of_equivariant_suspension_spectra} For $X$ a [[pointed topological space|pointed]] [[topological G-space]], then by the discussion \href{equivariant+suspension+spectrum#ROGDegrees}{there}) the formula for the equivariant homotopy groups of its [[equivariant suspension spectrum]] $\Sigma^\infty_G X$ reduces to \begin{displaymath} \pi_k^G(\Sigma^\infty_G X) \coloneqq \underset{\longrightarrow_n}{\lim} [S^{n \rho_g}, (\Omega^k X)\wedge S^{n \rho_G}]_G \end{displaymath} which in turn decomposes as a [[direct sum]] of ordinary [[homotopy groups]] of [[Weyl group]]-[[homotopy quotients]] of naive [[fixed point]] spaces -- see at \emph{[[tom Dieck splitting]]}. \hypertarget{of_the_equivariant_sphere_spectrum}{}\subsubsection*{{Of the equivariant sphere spectrum}}\label{of_the_equivariant_sphere_spectrum} For the [[equivariant sphere spectrum]] $\mathbb{S} = \Sigma^\infty_G S^0$ the [[tom Dieck splitting]] gives that its 0th [[equivariant homotopy group]] is the [[free abelian group]] on the set of [[conjugacy classes]] of [[subgroups]] of $G$: \begin{displaymath} \pi_0^G(\mathbb{S}) \simeq \underset{[H \subset G]}{\oplus} \pi_0^{W_G H}(\Sigma_+^\infty E (W_G H)) \simeq \mathbb{Z}[conjugacy\;classes\;of\;subgroups] \end{displaymath} (e.g. \hyperlink{Schwede15}{Schwede 15, p. 64}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_mackey_functors}{}\subsubsection*{{Relation to Mackey functors}}\label{relation_to_mackey_functors} As $H$-varies over the [[subgroups]] of a $G$-[[equivariant spectrum]] $E$, the $H$-equivariant homotopy groups organize into a [[contravariant functor|contravariant]] [[additive functor]] from the [[full subcategory]] of the [[equivariant stable homotopy category]] (called a [[Mackey functor]]) \begin{displaymath} \underline{\pi}_\bullet(E) \colon G/H \mapsto \pi^H_\bullet(X) \,. \end{displaymath} (e.g. \hyperlink{Schwede15}{Schwede 15, p. 16 and section 4}) (\ldots{}) \hypertarget{equivariant_stable_whitehead_theorem}{}\subsubsection*{{Equivariant stable Whitehead theorem}}\label{equivariant_stable_whitehead_theorem} The equivariant version of the stable [[Whitehead theorem]] holds: a mpa of $G$-spectra $f \colon E \longrightarrow F$ is a [[weak equivalence]] (e.g. an $RO(G)$-degree-wise [[weak homotopy equivalence]] of [[topological G-spaces]] in the \hyperlink{IndexedOnAllRepresentations}{model via indexing on all representations}) precisely it if induces [[isomorphisms]] $\pi_\bullet(f) \colon \pi_\bullet(E) \longrightarrow \pi_{\bullet}(F)$ on all [[equivariant homotopy group]] [[Mackey functors]]. (\hyperlink{GreenleesMay}{Greenlees-May, theorem 2.3}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homotopy group]] \item [[stable homotopy group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Greenlees]], [[Peter May]], \emph{Equivariant stable homotopy theory}, in I.M. James (ed.), \emph{Handbook of Algebraic Topology} , pp. 279-325. 1995. (\href{http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf}{pdf}) \item [[Peter May]], section IX.4 of \emph{Equivariant homotopy and cohomology theory} CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996. With contributions by M. Cole, G. Comeza\textasciitilde{}na, S. Costenoble, A. D. Elmenddorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. (\href{http://www.math.rochester.edu/u/faculty/doug/otherpapers/alaska1.pdf}{pdf}) \item [[Stefan Schwede]], \emph{[[Lectures on Equivariant Stable Homotopy Theory]]}, 2015 (\href{http://www.math.uni-bonn.de/people/schwede/equivariant.pdf}{pdf}) \end{itemize} [[!redirects equivariant homotopy groups]] [[!redirects equivariant stable homotopy group]] [[!redirects equivariant stable homotopy groups]] \end{document}