\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant sphere spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EquivariantHomotopyGroups}{Equivariant homotopy groups}\dotfill \pageref*{EquivariantHomotopyGroups} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{Z2equivariance}{$\mathbb{Z}_2$-equivariance}\dotfill \pageref*{Z2equivariance} \linebreak \noindent\hyperlink{cyclic_equivariance}{Cyclic ($G_D \hookrightarrow SO(2)$-)equivariance}\dotfill \pageref*{cyclic_equivariance} \linebreak \noindent\hyperlink{equivariance_2}{$G_{ADE} \hookrightarrow SO(3)$-equivariance}\dotfill \pageref*{equivariance_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{equivariance_3}{$\mathbb{Z}/2$-equivariance}\dotfill \pageref*{equivariance_3} \linebreak \noindent\hyperlink{equivariance_4}{$\mathbb{Z}/4$-equivariance}\dotfill \pageref*{equivariance_4} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[sphere spectrum]] in ([[global equivariant stable homotopy theory|global]]) [[equivariant stable homotopy theory]]. Its [[RO(G)-grading|RO(G)-graded]] [[homotopy groups]] are the equivariant version of the [[stable homotopy groups of spheres]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The $G$-equivariant sphere spectrum is the [[equivariant suspension spectrum]] of the [[0-sphere]] $S^0 = \ast_+$ \begin{displaymath} \mathbb{S} = \Sigma^\infty_G S^0 \end{displaymath} for $S^0$ regarded as equipped with the (necessarily) trivial $G$-action. It follows that for $V$ an orthogonal linear $G$-representation then in [[RO(G)-degree]] $V$ the equivariant sphere spectrum is the corresponding [[representation sphere]] $\mathbb{S}(V) \simeq S^V$. (e.g. \hyperlink{Schwede15}{Schwede 15, example 2.10}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EquivariantHomotopyGroups}{}\subsubsection*{{Equivariant homotopy groups}}\label{EquivariantHomotopyGroups} Just as for the plain [[sphere spectrum]], the [[equivariant homotopy groups]] of the equivariant sphere spectrum in ordinary [[integer]] degrees $n$ are all [[torsion subgroup|torsion]], except at $n = 0$: \begin{displaymath} \pi_n^H(\mathbb{S})\otimes \mathbb{Q} = \left\{ \itexarray{ \cdots & for \; n = 0 \\ 0 & otherwise } \right. \end{displaymath} (\hyperlink{GreenleesMay95}{Greenlees-May 95, prop. A.3}) But in some [[RO(G)-degrees]] there may appear further non-torsion groups, see the \hyperlink{Examples}{examples} below. In degree 0, the [[tom Dieck splitting]] applied to the [[equivariant suspension spectrum]] $\mathbb{S} = \Sigma^\infty_G S^0$ gives that $\pi_0^G(\mathbb{S})$ is the [[free abelian group]] on the set of [[conjugacy classes]] of [[subgroups]] of $G$: \begin{equation} \pi_0^G(\mathbb{S}) \simeq \underset{[H \subset G]}{\oplus} \pi_0^{W_G H}(\Sigma_+^\infty E (W_G H)) \simeq \mathbb{Z}[conjugacy\;classes\;of\;subgroups] \label{pi_0ofEquivariantSphere}\end{equation} (e.g. \hyperlink{Schwede15}{Schwede 15, p. 64}) \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \hypertarget{Z2equivariance}{}\subsubsection*{{$\mathbb{Z}_2$-equivariance}}\label{Z2equivariance} Consider $G= \mathbb{Z}_2$ the [[cyclic group of order 2]] and write $\pi^S_{p,q}$ for the homotopy group in [[RO(G)-grading|RO(G)-degree]] given by the representation on $\mathbb{R}^{p+q}$ with $\mathbb{Z}_2$ acts by [[reflection]] on the first $p$ coordinates, and trivially on the remaining $q$ coordinates: The following groups contain $\mathbb{Z}$-summands: \begin{itemize}% \item $\pi^S_{0,0} = \mathbb{Z} \times \mathbb{Z}$ (by the [[equivariant Hopf degree theorem]], \href{Hopf+degree+theorem#EquivariantCohomotopyOfRepresentationSphereOfSignRepresentationInThatDegree}{this Example}) \item $\pi^S_{1,0}$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 8.7, p. 25}) generated by the [[complex Hopf fibration]] $\hat \eta$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, p. 24}) \item $\pi^S_{2,0}$ generated by $\hat \eta^2$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 9.6, p. 27}) \item $\pi^S_{3,0}$ generated by $\hat \eta^3$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 10.11, p. 31}) \item $\pi^S_{4,0}$ generated by $\hat \eta^4$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 11.3, p. 32}) \item $\pi^S_{5,0}$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 12.4, p. 34}) \item $\pi^S_{6,0}$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 13.12, p. 38}) \item $\pi^S_{7,0}$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 14.18, p. 45}) \item $\pi^S_{8,0}$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, theorem 15.26, p. 54}) \end{itemize} In addition we have \begin{itemize}% \item $\pi^S_{2,1} \simeq \mathbb{Z}/24$ generated by the [[quaternionic Hopf fibration]] $\hat \nu$ (\hyperlink{ArakiIriye82}{Araki-Iriye 82, prop. 10.1, p. 28 with theorem 10.11, p. 31}) \end{itemize} In summary and more generally we have the following $\mathbb{Z}/2$-equivariant stable homotopy groups of spheres in low bidegree: $\backslash$begin\{center\} $\backslash$end\{center\} \begin{quote}% The table shows the $\mathbb{Z}/2$-equivariant stable homotopy groups of spheres $\pi^S_{p,q}$ with $p+q$ increasing horizontally to the right, and $p$ increasing vertically upwards. The origin is the double-circled $\pi^S_{0,0} = \mathbb{Z}^2$. The [[complex Hopf fibration]] $\hat\eta$ generates $\pi^S_{1,0} = \mathbb{Z}$, and the [[quaternionic Hopf fibration]] generates $\pi^S_{2,1} = \mathbb{Z}/24$ graphics grabbed from \hyperlink{Dugger08}{Dugger 08}, based on \hyperlink{ArakiIriye82}{Araki-Iriye 82} (beware that \hyperlink{Dugger08}{Dugger 08} uses a different bi-degree labeling convention: the $(p,q)$ here is $(p+q,p)$ in \hyperlink{Dugger08}{Dugger 08}, matching the coordinates of the above table) \end{quote} \begin{tabular}{l|l|l|l|l|l} &$n_{sgn} + n$&$0$&$1$&$2$&$3$\\ \hline $n_{sgn}$&$\pi^{st}_{n_{sgn} + n}$&&&&\\ $2$&&$0$&$0$&$\mathbb{Z} = \langle (h_{\mathbb{C}})^2\rangle$&$\mathbb{Z}_{24} = \langle h_{\mathbb{H}}\rangle$\\ $1$&&$0$&$\mathbb{Z} = \langle h_{\mathbb{C}}\rangle$&$\pi_1^{st} \oplus \mathbb{Z}_2$&$\pi^{st}_2 \oplus \mathbb{Z}_2$\\ $0$&&$\pi_0^{st} \oplus \mathbb{Z}$&$\pi_1^{st} \oplus (\mathbb{Z}_2)^2$&$\pi_2^{st} \oplus (\mathbb{Z}_2)^2$&$\pi_3^{st} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{24}$\\ \end{tabular} \hypertarget{cyclic_equivariance}{}\subsubsection*{{Cyclic ($G_D \hookrightarrow SO(2)$-)equivariance}}\label{cyclic_equivariance} The global equivariant sphere spectrum for all the [[cyclic groups]] over the [[circle group]] is canonically a [[cyclotomic spectrum]] and as such is the [[tensor unit]] in the [[monoidal (infinity,1)-category]] of [[cyclotomic spectra]] (see there). \hypertarget{equivariance_2}{}\subsubsection*{{$G_{ADE} \hookrightarrow SO(3)$-equivariance}}\label{equivariance_2} See at \emph{\href{quaternionic+Hopf+fibration#ClassInEquivariantStableHomotopyTheory}{quaternionic Hopf fibration -- Class in equivariant stable homotopy theory}} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The [[cohomology theory]] [[Brown representability theorem|represented]] by the equivariant sphere spectrum is \emph{[[equivariant stable cohomotopy]]}. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} General lecture notes include \begin{itemize}% \item [[Stefan Schwede]], example 2.10 in \emph{[[Lectures on Equivariant Stable Homotopy Theory]]} \end{itemize} Discussion in [[rational equivariant stable homotopy theory]] includes \begin{itemize}% \item [[John Greenlees]], [[Peter May]], appendix A of \emph{Generalized Tate cohomology}, Mem. Amer. Math. Soc. 113 (1995) no 543 (\href{http://www.math.rochester.edu/people/faculty/doug/otherpapers/GM-Tate-543.pdf}{pdf}) \end{itemize} The sphere spectrum in [[global equivariant homotopy theory]] is discussed in \begin{itemize}% \item [[John Rognes]], \emph{Galois extensions of structured ring spectra} (\href{http://arxiv.org/abs/math/0502183}{arXiv:math/0502183}) \item Markus Hausmann, Dominik Ostermayr, \emph{Filtrations of global equivariant K-theory} (\href{http://arxiv.org/abs/1510.04011}{arXiv:1510.04011}) \end{itemize} \hypertarget{equivariance_3}{}\subsubsection*{{$\mathbb{Z}/2$-equivariance}}\label{equivariance_3} Discussion of $G$-equivariant homotopy groups for $G = \mathbb{Z}/2$ is in \begin{itemize}% \item [[Peter Landweber]], \emph{On Equivariant Maps Between Spheres with Involutions}, Annals of Mathematics Second Series, Vol. 89, No. 1 (Jan., 1969), pp. 125-137 (\href{http://www.jstor.org/stable/1970812}{jstor}) \item Sh\^o{}r\^o{} Araki, Kouyemon Iriye, \emph{Equivariant stable homotopy groups of spheres with involutions. I}, Osaka J. Math. Volume 19, Number 1 (1982), 1-55. (\href{http://projecteuclid.org/euclid.ojm/1200774828}{Euclid:1200774828}) \item Kouyemon Iriye, \emph{Equivariant stable homotopy groups of spheres with involutions. II}, Osaka J. Math. Volume 19, Number 4 (1982), 733-743 (\href{https://projecteuclid.org/euclid.ojm/1200775536}{euclid:1200775536}) \item [[Daniel Dugger]], [[Daniel Isaksen]], \emph{$\mathbb{Z}/2$-equivariant and R-motivic stable stems}, Proceedings of the American Mathematical Society 145.8 (2017): 3617-3627 (\href{https://arxiv.org/abs/1603.09305}{arXiv:1603.09305}) \end{itemize} with exposition in \begin{itemize}% \item [[Daniel Dugger]], \emph{Motivic stable homotopy groups of spheres}, talk at \href{http://sma.epfl.ch/~hessbell/arolla/}{Third Arolla Conference on Algebraic Topology} 2008 (\href{http://sma.epfl.ch/~hessbell/arolla/slides12/Dugger.pdf}{pdf}, [[DuggerMotivicStableHomotopy08.pdf:file]]) \end{itemize} \hypertarget{equivariance_4}{}\subsubsection*{{$\mathbb{Z}/4$-equivariance}}\label{equivariance_4} Discussion for $G = \mathbb{Z}/4$ is in \begin{itemize}% \item M. C. Crabb, \emph{Periodicty in $\mathbb{Z}/4$ equivariant stable homotopy theory}, in [[Mark Mahowald]] and Stewart Priddy (eds.) \emph{Algebraic Topology}, Proceedings of the International Conference held March 21-24 (1988) Contemporary Mathematics, volume 96, 1989 (\href{http://www.ams.org/books/conm/096/conm096.pdf}{pdf}, \href{http://www.ams.org/books/conm/096/}{publisher page}) \end{itemize} General background includes \begin{itemize}% \item [[Stefan Schwede]], \emph{[[Lectures on Equivariant Stable Homotopy Theory]]}, 2015 (\href{http://www.math.uni-bonn.de/people/schwede/equivariant.pdf}{pdf}) \end{itemize} [[!redirects equivariant sphere spectra]] [[!redirects global equivariant sphere spectrum]] [[!redirects global sphere spectrum]] \end{document}