\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant stable cohomotopy} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsAlgebraicKTheoryOverTheFieldWithOneElement}{As equivariant algebraic K-theory over $\mathbb{F}_1$}\dotfill \pageref*{AsAlgebraicKTheoryOverTheFieldWithOneElement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{equivariant_stable_}{Equivariant stable $\pi_3^{\mathbb{S}}$}\dotfill \pageref*{equivariant_stable_} \linebreak \noindent\hyperlink{of_the_point_the_burnside_ring}{Of the point: The Burnside ring}\dotfill \pageref*{of_the_point_the_burnside_ring} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{relation_to_burnside_ring}{Relation to Burnside ring}\dotfill \pageref*{relation_to_burnside_ring} \linebreak \noindent\hyperlink{relation_to_segalcarlsson_completion_theorem}{Relation to Segal-Carlsson completion theorem}\dotfill \pageref*{relation_to_segalcarlsson_completion_theorem} \linebreak \noindent\hyperlink{as_equivariant_ktheory_over_the_field_with_one_element}{As equivariant K-theory over the field with one element}\dotfill \pageref*{as_equivariant_ktheory_over_the_field_with_one_element} \linebreak \noindent\hyperlink{in_mbrane_charge_quantization}{In M-brane charge quantization}\dotfill \pageref*{in_mbrane_charge_quantization} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[equivariant cohomology|equivariant]] [[generalized cohomology theory]] which is [[Brown representability theorem|represented]] by the [[equivariant sphere spectrum]] may also be called \emph{equivariant stable cohomotopy}, as it is the [[equivariant stable homotopy theory]] version of [[stable cohomotopy]], hence of [[cohomotopy]]. This is to be thought of as the first order [[Goodwillie-Taylor tower|Goodwillie approximation]] of plain (``unstable'') [[equivariant cohomotopy]]. Just as the plain [[sphere spectrum]] is a distinguished object of plain [[stable homotopy theory]], so the [[equivariant sphere spectrum]] is distinguished in [[equivariant stable homotopy theory]] and hence so is equivariant stable cohomotopy theory. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsAlgebraicKTheoryOverTheFieldWithOneElement}{}\subsubsection*{{As equivariant algebraic K-theory over $\mathbb{F}_1$}}\label{AsAlgebraicKTheoryOverTheFieldWithOneElement} The following is known as the \emph{Barratt-Priddy-Quillen theorem}: \begin{prop} \label{StableCohomotopyIsKTheoryOfFinSet}\hypertarget{StableCohomotopyIsKTheoryOfFinSet}{} \textbf{([[stable cohomotopy]] is K-theory of [[FinSet]])} Let $\mathcal{C} =$ [[FinSet]] be a [[skeleton]] of the category of [[finite sets]], regarded as a [[permutative category]]. Then the [[K-theory of a permutative category|K-theory of this permutative category]] \begin{displaymath} K(FinSet) \;\simeq\; \mathbb{S} \end{displaymath} is represented by the [[sphere spectrum]], hence is stable cohomotopy. \end{prop} This is due to \hyperlink{BarrattPriddy72}{Barratt-Priddy 72} reproved in \hyperlink{Segal74}{Segal 74, Prop. 3.5}. See also \hyperlink{Priddy73}{Priddy 73}, \hyperlink{Glasman13}{Glasman 13}. \begin{remark} \label{StableCohomotopyIsAlgebraicKTheoryOverFieldWithOneElement}\hypertarget{StableCohomotopyIsAlgebraicKTheoryOverFieldWithOneElement}{} \textbf{([[stable cohomotopy]] as [[algebraic K-theory]] over the [[field with one element]])} Notice that for $F$ a [[field]], the [[K-theory of a permutative category]] of its [[category of modules]] $F Mod$ is its [[algebraic K-theory]] $K F$ (see \href{K-theory+of+a+permutative+category#OrdinaryAlgebraicKTheoryFromPermutativeCategoryOfProjectiveModules}{this example}) \begin{displaymath} K F \;\simeq\; K(F Mod) \,. \end{displaymath} Now ([[pointed sets|pointed]]) [[finite sets]] may be regarded as the modules over the ``[[field with one element]]'' $\mathbb{F}_1$ (see \href{field+with+one+element#Modules}{there}): \begin{displaymath} \mathbb{F}_1 Mod \;=\; FinSet^{\ast/} \end{displaymath} If this is understood, example \ref{StableCohomotopyIsKTheoryOfFinSet} says that [[stable cohomotopy]] is the algebraic K-theory of the [[field with one element]]: \begin{displaymath} \mathbb{S} \;\simeq\; K \mathbb{F}_1 \,. \end{displaymath} \end{remark} This perspective is highlighted for instance in (\hyperlink{Deitmar06}{Deitmar 06, p. 2}, \hyperlink{Guillot06}{Guillot 06}, \hyperlink{Mahanta17}{Mahanta 17}, \hyperlink{DundasGoodwillieMcCarthy13}{Dundas-Goodwillie-McCarthy 13, II 1.2}, \hyperlink{MoravaSomeBackground}{Morava}, \hyperlink{ConnesConsani16}{Connes-Consani 16}). The perspective that the [[K-theory]] $K \mathbb{F}_1$ over $\mathbb{F}_1$ should be [[stable Cohomotopy]] has been highlighted in (\hyperlink{Deitmar06}{Deitmar 06, p. 2}, \hyperlink{Guillot06}{Guillot 06}, \hyperlink{Mahanta17}{Mahanta 17}, \hyperlink{DundasGoodwillieMcCarthy13}{Dundas-Goodwillie-McCarthy 13, II 1.2}, \hyperlink{MoravaSomeBackground}{Morava}, \hyperlink{ConnesConsani16}{Connes-Consani 16}). Generalized to [[equivariant stable homotopy theory]], the statement that [[equivariant K-theory]] $K_G \mathbb{F}_1$ over $\mathbb{F}_1$ should be [[equivariant stable Cohomotopy]] is discussed in \hyperlink{ChuLorscheidSanthanam10}{Chu-Lorscheid-Santhanam 10, 5.3}. [[!include Segal completion -- table]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{equivariant_stable_}{}\subsubsection*{{Equivariant stable $\pi_3^{\mathbb{S}}$}}\label{equivariant_stable_} See at \emph{\href{quaternionic+Hopf+fibration#ClassInEquivariantStableHomotopyTheory}{quaternionic Hopf fibration -- Class in equivariant stable homotopy theory}} \hypertarget{of_the_point_the_burnside_ring}{}\subsubsection*{{Of the point: The Burnside ring}}\label{of_the_point_the_burnside_ring} \begin{prop} \label{BurnsideRingIsEquivariantStableCohomotopyOfPoint}\hypertarget{BurnsideRingIsEquivariantStableCohomotopyOfPoint}{} \textbf{([[Burnside ring is equivariant stable cohomotopy of the point]])} Let $G$ be a [[finite group]], then its [[Burnside ring]] $A(G)$ is [[isomorphism|isomorphic]] to the [[equivariant stable cohomotopy]] [[cohomology ring]] $\mathbb{S}_G(\ast)$ of the [[point]] in degree 0. \begin{displaymath} A(G) \overset{\simeq}{\longrightarrow} \mathbb{S}_G(\ast) \,. \end{displaymath} \end{prop} This is due to \hyperlink{Segal71}{Segal 71}, a detailed proof is given by \hyperlink{tomDieck79}{tom Dieck 79, theorem 8.5.1}. See also \hyperlink{Lueck05}{Lück 05, theorem 1.13}, \hyperlink{tomDieckPetrie78}{tom Dieck-Petrie 78}. [[!include Segal completion -- table]] More explicitly, this means that the Burnside ring of a group $G$ is isomorphic to the [[colimit]] \begin{displaymath} A(G) \simeq \underset{\longrightarrow}{\lim}_V [S^V,S^V]_G \end{displaymath} over $G$-[[representations]] in a complete [[G-universe]], of $G$-[[homotopy classes]] of $G$-equivariant based [[continuous functions]] from the [[representation sphere]] $S^V$ to itself (\hyperlink{GreenleesMay95}{Greenlees-May 95, p. 8}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include flavours of cohomotopy -- table]] \begin{itemize}% \item [[Burnside ring]] \item [[Segal conjecture]], [[Sullivan conjecture]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{relation_to_burnside_ring}{}\subsubsection*{{Relation to Burnside ring}}\label{relation_to_burnside_ring} Relation to [[Burnside ring]]: \begin{itemize}% \item [[Graeme Segal]], \emph{Equivariant stable homotopy theory}, In Actes du Congr\`e{}s International des Math \'e{}maticiens (Nice, 1970), Tome 2 , pages 59–63. Gauthier-Villars, Paris, 1971 ([[SegalEquivariantStableHomotopyTheory.pdf:file]]) \item [[Tammo tom Dieck]], T. Petrie, \emph{Geometric modules over the Burnside ring}, Invent. Math. 47 (1978) 273-287 (\href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/tomDieck-geometric.pdf}{pdf}) \item [[Tammo tom Dieck]], \emph{[[Transformation Groups and Representation Theory]]}, Springer 1979 \end{itemize} \hypertarget{relation_to_segalcarlsson_completion_theorem}{}\subsubsection*{{Relation to Segal-Carlsson completion theorem}}\label{relation_to_segalcarlsson_completion_theorem} Relation to [[Segal-Carlsson completion theorem]]: \begin{itemize}% \item Czes Kosniowski, \emph{Equivariant cohomology and Stable Cohomotopy}, Math. Ann. 210, 83-104 (1974) (\href{https://doi.org/10.1007/BF01360033}{doi:10.1007/BF01360033} \href{https://link.springer.com/content/pdf/10.1007/BF01360033.pdf}{pdf}) \item Erkki Laitinen, \emph{On the Burnside ring and stable cohomotopy of a finite group}, Mathematica Scandinavica Vol. 44, No. 1 (August 30, 1979), pp. 37-72 (\href{https://www.jstor.org/stable/24491306}{jstor:24491306}, [[Laitinen79.pdf:file]]) \item [[Gunnar Carlsson]], \emph{Equivariant Stable Homotopy and Segal's Burnside Ring Conjecture}, Annals of Mathematics Second Series, Vol. 120, No. 2 (Sep., 1984), pp. 189-224 (\href{https://www.jstor.org/stable/2006940}{jstor:2006940}, \href{https://web.math.rochester.edu/people/faculty/doug/otherpapers/carlsson.pdf}{pdf}) \item [[Wolfgang Lück]], \emph{The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups}, Pure Appl. Math. Q. 1 (2005), no. 3, Special Issue: In memory of Armand Borel. Part 2, 479--541 (\href{https://arxiv.org/abs/math/0504051}{arXiv:math/0504051}) \item Noe Barcenas, \emph{Nonlinearity, Proper Actions and Equivariant Stable Cohomotopy} (\href{https://arxiv.org/abs/1302.1712}{arXiv:1302.1712}) \end{itemize} A lift of [[Seiberg-Witten invariants]] to classes in [[circle group]]-equivariant stable cohomotopy is discussed in \begin{itemize}% \item Stefan Bauer, Mikio Furuta \emph{A stable cohomotopy refinement of Seiberg-Witten invariants: I} (\href{http://arxiv.org/abs/math/0204340}{arXiv:math/0204340}) \item Stefan Bauer, \emph{A stable cohomotopy refinement of Seiberg-Witten invariants: II} (\href{http://arxiv.org/abs/math/0204267}{arXiv:math/0204267}) \item Christian Okonek, Andrei Teleman, \emph{Cohomotopy Invariants and the Universal Cohomotopy Invariant Jump Formula}, J. Math. Sci. Univ. Tokyo 15 (2008), 325-409 (\href{http://www.matmor.unam.mx/~barcenas/nonlinearity.pdf}{pdf}) \end{itemize} \hypertarget{as_equivariant_ktheory_over_the_field_with_one_element}{}\subsubsection*{{As equivariant K-theory over the field with one element}}\label{as_equivariant_ktheory_over_the_field_with_one_element} The identification of stable cohomotopy with the [[K-theory of a permutative category|K-theory of the permutative category]] of [[finite set]] is due to \begin{itemize}% \item [[Michael Barratt]], [[Stewart Priddy]], \emph{On the homology of non-connected monoids and their associated groups}, Commentarii Mathematici Helvetici, December 1972, Volume 47, Issue 1, pp 1–14 (\href{https://doi.org/10.1007/BF02566785}{doi:10.1007/BF02566785}) \item [[Graeme Segal]], \emph{Categories and cohomology theories}, Topology vol 13, pp. 293-312, 1974 (\href{http://ncatlab.org/nlab/files/SegalCategoriesAndCohomologyTheories.pdf}{pdf}) \end{itemize} see also \begin{itemize}% \item [[Stewart Priddy]], \emph{Transfer, symmetric groups, and stable homotopy theory}, in \emph{Higher K-Theories}, Springer, Berlin, Heidelberg, 1973. 244-255 (\href{https://link.springer.com/content/pdf/10.1007/BFb0067060.pdf}{pdf}) \item [[Saul Glasman]], \emph{The multiplicative Barratt-Priddy-Quillen theorem and beyond}, talk 2013 (\href{http://math.mit.edu/~sglasman/bpq-beamer.pdf}{pdf}) \end{itemize} The resulting interpretation of stable cohomotopy as [[algebraic K-theory]] over the [[field with one element]] is amplified in the following texts: \begin{itemize}% \item [[Bjørn Dundas]], [[Thomas Goodwillie]], [[Randy McCarthy]], chapter II, section 1.2 of \emph{The local structure of algebraic K-theory}, Springer 2013 (\href{http://math.mit.edu/~nrozen/juvitop/dundas.pdf}{pdf}) \item [[Anton Deitmar]], \emph{Remarks on zeta functions and K-theory over $\mathbb{F}_1$} (\href{https://arxiv.org/abs/math/0605429}{arXiv:math/0605429}) \item [[Pierre Guillot]], \emph{Adams operations in cohomotopy} (\href{https://arxiv.org/abs/math/0612327}{arXiv:0612327}) \item [[Snigdhayan Mahanta]], \emph{G-theory of $\mathbb{F}_1$-algebras I: the equivariant Nishida problem}, J. Homotopy Relat. Struct. 12 (4), 901-930, 2017 (\href{https://arxiv.org/abs/1110.6001}{arXiv:1110.6001}) \item Chenghao Chu, [[Oliver Lorscheid]], Rekha Santhanam, \emph{Sheaves and K-theory for $\mathbb{F}_1$-schemes}, Advances in Mathematics, Volume 229, Issue 4, 1 March 2012, Pages 2239-2286 (\href{https://arxiv.org/abs/1010.2896}{arxiv:1010.2896}) \end{itemize} see also \begin{itemize}% \item [[Jack Morava]], \emph{Some background on Manin's theorem $K(\mathbb{F}_1) \sim \mathbb{S}$} (\href{http://www.alainconnes.org/docs/Morava.pdf}{pdf}, [[MoravaSomeBackground.pdf:file]]) \item [[Alain Connes]], [[Caterina Consani]], \emph{Absolute algebra and Segal's Gamma sets}, Journal of Number Theory 162 (2016): 518-551 (\href{https://arxiv.org/abs/1502.05585}{arXiv:1502.05585}) \item John D. Berman, p. 92 of \emph{Categorified algebra and equivariant homotopy theory}, PhD thesis 2018 (\href{http://www.people.virginia.edu/~jdb8pc/Thesis.pdf}{pdf}) \end{itemize} \hypertarget{in_mbrane_charge_quantization}{}\subsubsection*{{In M-brane charge quantization}}\label{in_mbrane_charge_quantization} Discussion for [[M-brane]] physics: \begin{itemize}% \item [[John Huerta]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Equivariant homotopy and super M-branes|Real ADE-equivariant (co)homotopy and Super M-branes]]} (\href{https://arxiv.org/abs/1805.05987}{arXiv:1805.05987}) ([[equivariant rational homotopy theory|rational]] [[equivariant cohomotopy]]) \item [[nLab:Hisham Sati]], [[nLab:Urs Schreiber]], \emph{[[schreiber:Equivariant Cohomotopy implies orientifold tadpole cancellation]]} (\href{https://arxiv.org/abs/1909.12277}{arXiv:1909.12277}) (implying [[RR-field tadpole cancellation]]) \end{itemize} [[!redirects equivariant stable Cohomotopy]] [[!redirects equivariant stable cohomotopy theory]] [[!redirects equivariant stable cohomotopy theories]] [[!redirects equivariant stable Cohomotopy theory]] [[!redirects equivariant stable Cohomotopy theories]] [[!redirects stable equivariant cohomotopy]] [[!redirects stable equivariant Cohomotopy]] \end{document}