\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{equivariant stable homotopy theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{basic_definitions}{Basic definitions}\dotfill \pageref*{basic_definitions} \linebreak \noindent\hyperlink{in_terms_of_looping_by_representation_spheres}{In terms of looping by representation spheres}\dotfill \pageref*{in_terms_of_looping_by_representation_spheres} \linebreak \noindent\hyperlink{in_terms_of_orthogonal_spectra_with_action}{In terms of orthogonal spectra with $G$-action}\dotfill \pageref*{in_terms_of_orthogonal_spectra_with_action} \linebreak \noindent\hyperlink{in_terms_of_mackeyfunctors}{In terms of Mackey-functors}\dotfill \pageref*{in_terms_of_mackeyfunctors} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{equivariant_cohomology}{Equivariant cohomology}\dotfill \pageref*{equivariant_cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Equivariant stable homotopy theory over some [[topological group]] $G$ is the [[stable homotopy theory]] of [[G-spectra]]. This includes the [[naive G-spectra]] which constitute the actual [[stabilization]] of [[equivariant homotopy theory]], but is more general, one speaks of \emph{genuine $G$-spectra}. Notably a genuine $G$-spectrum has [[homotopy groups]] graded not by the group of [[integers]], but by the [[representation ring]] of $G$ (usually called [[RO(G)-grading]]). The concept of [[cohomology]] in equivariant stable homotopy theory is \emph{[[equivariant cohomology]]}: [[!include equivariant cohomology -- table]] \hypertarget{basic_definitions}{}\subsection*{{Basic definitions}}\label{basic_definitions} \hypertarget{in_terms_of_looping_by_representation_spheres}{}\subsubsection*{{In terms of looping by representation spheres}}\label{in_terms_of_looping_by_representation_spheres} The definition of \emph{[[G-spectrum]]} is typically given in generalization of the definition of [[coordinate-free spectrum]]. A \textbf{[[G-universe]]} in this context is (e.g. \hyperlink{GreenleesMay}{Greenlees-May, p. 10}) an infinite dimensional real [[inner product space]] equipped with a linear $G$-[[action]] that is the [[direct sum]] of [[countable|countably]] many copies of a given [[set]] of (finite dimensional? -DMR) [[representations]] of $G$, at least containing the trivial representation on $\mathbb{R}$ (so that $U$ contains at least a copy of $\mathbb{R}^\infty$). Each such subspace of $U$ (representation contained in $U$? -DMR) is called an \emph{indexing space} ([[RO(G)-grading]]). For $V \subset W$ indexing spaces, write $W-V$ for the [[orthogonal complement]] of $V$ in $W$. Write $S^V$ for the [[one-point compactification]] of $V$; and for $X$ any (pointed) [[topological space]] write $\Omega^V := [S^V,X]$ for the corresponding (based) sphere space. A \textbf{[[G-space]]} in the following means a [[pointed object|pointed]] [[topological space]] equipped with a continuous [[action]] of the [[topological group]] $G$ that fixes the base point. A morphism of $G$-spaces is a continuous map that fixes the basepoints and is $G$-equivariant. A weak equivalence of $G$-spaces is a morphism that induces isomorphism on all $H$-fixed homotopy groups (\ldots{}) A \textbf{$G$-spectrum} $E$ (indexed on the chosen universe $U$) is \begin{itemize}% \item for each indexing space $V \subset U$ a $G$-space $E V$; \item for each pair $V \subset W$ of indexing spaces a $G$-equivariant [[homeomorphism]] \begin{displaymath} E V \stackrel{\simeq}{\to} \Omega^{W-V} E W \,. \end{displaymath} \end{itemize} A [[morphism]] $f : E \to E'$ of $G$-spectra is for each indexing space $V$ a morphism of $G$-spaces $f_V : E V \to E' V$, such that this makes the obvious diagrams commute. This becomes a [[category with weak equivalences]] by setting: a morphism $f$ of $G$-spectra is a \textbf{weak equivalence of $G$-spectra} if for every indexing space $V$ the component $f_V$ is a weak equivalence of $G$-spaces (as defined above). This may be expressed directly in terms of the notion of \textbf{homotopy group of a $G$-spectrum}: this is \ldots{} \hypertarget{in_terms_of_orthogonal_spectra_with_action}{}\subsubsection*{{In terms of orthogonal spectra with $G$-action}}\label{in_terms_of_orthogonal_spectra_with_action} \ldots{} (\hyperlink{Schwede15}{Schwede 15})\ldots{} \hypertarget{in_terms_of_mackeyfunctors}{}\subsubsection*{{In terms of Mackey-functors}}\label{in_terms_of_mackeyfunctors} A \emph{[[Mackey functor]]} with values in [[spectra]] (``spectral Mackey functor'') is an [[(∞,1)-functor]] on a suitable [[(∞,1)-category of correspondences]] $Corr_1^{eff}(\mathcal{C}) \hookrightarrow Corr_1(\mathcal{C})$ which sends [[coproducts]] to [[smash product]]. (This is similar to the concept of [[sheaf with transfer]].) \begin{displaymath} S \;\colon\; Corr_1^{eff}(\mathcal{C}) \longrightarrow Spectra \end{displaymath} For $G$ a [[finite group]] and $\mathcal{C}= G Set$ its category of [[permutation representations]], we have that $S$ is a genuine $G$-[[equivariant spectrum]] (\hyperlink{GuillouMay11}{Guillou-May 11}). So in this case the [[homotopy theory]] of spectral Mackey functors is a presentation for [[equivariant stable homotopy theory]] (\hyperlink{GuillouMay11}{Guillou-May 11}, \hyperlink{Barwick14}{Barwick 14}). For $\mathcal{C}$ an [[abelian category]] this definition reduces (\hyperlink{Barwick14}{Barwick 14}) Mackey functors as originally defined in (\hyperlink{Dress71}{Dress 71}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[equivariant sphere spectrum]], [[equivariant stable cohomotopy]] \item [[equivariant bordism homology theory]], [[equivariant cobordism cohomology theory]] \item [[equivariant connective topological K-theory]] \end{itemize} [[!include Segal completion -- table]] \begin{itemize}% \item [[KR cohomology theory]] \item [[equivariant complex cobordism cohomology theory]] \item [[equivariant Morava K-theory]] \end{itemize} \hypertarget{equivariant_cohomology}{}\subsection*{{Equivariant cohomology}}\label{equivariant_cohomology} The notion of [[cohomology]] relevant in equivariant stable homotopy theory is the flavor of [[equivariant cohomology]] (see there for details) called [[Bredon cohomology]]. (See also at \emph{[[orbifold cohomology]]}.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[equivariant differential topology]] \item [[global equivariant homotopy theory]] \item [[rational equivariant stable homotopy theory]] \item [[equivariant motivic homotopy theory]] \item [[equivariant spectrum]], [[equivariant sphere spectrum]], [[equivariant suspension spectrum]], [[equivariant homotopy group]], [[equivariant stable homotopy category]], [[tom Dieck splitting]], [[slice spectral sequence]] \item [[G-spectra]], [[naive G-spectra]], [[spectra with G-action]] [[G-spaces]] \item [[Burnside category]], [[Burnside ring]] [[Mackey functor]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original articles include \begin{itemize}% \item [[Graeme Segal]], \emph{Equivariant stable homotopy theory}, Actes du Congr\`e{}s International des Math\'e{}maticiens (Nice, 1970), Tome 2, pp. 59--63. Gauthier-Villars, Paris, 1971. ([[SegalEquivariantStableHomotopyTheory.pdf:file]]) \end{itemize} A textbook account in terms of [[G-spectra]] modeled on a complete [[G-universe]] is in \begin{itemize}% \item [[L. Gaunce Lewis]], [[Peter May]], and Mark Steinberger (with contributions by J.E. McClure), \emph{Equivariant stable homotopy theory}, Springer Lecture Notes in Mathematics Vol.1213. 1986 (\href{http://www.math.uchicago.edu/~may/BOOKS/equi.pdf}{pdf}, \href{https://link.springer.com/book/10.1007/BFb0075778}{doi:10.1007/BFb0075778}) \end{itemize} and a more modern version taking into account the theory of [[symmetric monoidal categories of spectra]] is in \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], \emph{Equivariant orthogonal spectra and S-modules}, Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108. MR 2003i:55012 (\href{http://www.math.uiuc.edu/K-theory/0408/MMM.pdf}{pdf}, \href{http://www.math.uiuc.edu/K-theory/0408/}{K-theory archive}) \end{itemize} See also \begin{itemize}% \item [[Michael Hill]], [[Michael Hopkins]], [[Douglas Ravenel]], Appendix of: \emph{On the non-existence of elements of Kervaire invariant one}, Annals of Mathematics Volume 184 (2016), Issue 1 (\href{https://doi.org/10.4007/annals.2016.184.1.1}{doi:10.4007/annals.2016.184.1.1}, \href{http://arxiv.org/abs/0908.3724}{arXiv:0908.3724}, \href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/Skye_handout.pdf}{talk slides}) \end{itemize} Lecture notes are in \begin{itemize}% \item [[Andrew Blumberg]], \emph{The Burnside category}, 2017 (\href{https://www.ma.utexas.edu/users/a.debray/lecture_notes/m392c_EHT_notes.pdf}{pdf}, \href{https://github.com/adebray/equivariant_homotopy_theory}{GitHub}) \end{itemize} Further introductions and surveys include the following \begin{itemize}% \item [[Gunnar Carlsson]], \emph{A survey of equivariant stable homotopy theory},Topology, Vol 31, No. 1, pp. 1-27, 1992 (\href{http://www.maths.ed.ac.uk/~aar/papers/carlsson1.pdf}{pdf}) \item [[Anna Marie Bohmann]], \emph{Basic notions of equivariant stable homotopy theory} (\href{http://math.northwestern.edu/~bohmann/basicequivnotions.pdf}{pdf}) \item [[John Greenlees]], [[Peter May]], \emph{[[Equivariant stable homotopy theory]]}, in [[Ioan James]] (ed.), \emph{[[Handbook of Algebraic Topology]]} , pp. 279-325. 1995. (\href{http://www.math.uchicago.edu/~may/PAPERS/Newthird.pdf}{pdf}) \item [[Brooke Shipley]], \emph{An introduction to equivariant homotopy theory} (\href{http://homepages.math.uic.edu/~bshipley/bonn.2.pdf}{pdf}) \item \href{http://math.mit.edu/conferences/talbot/index.php?year=2016}{Talbot workshop 2016} \end{itemize} Lecture notes on [[G-spectra]] modeled as [[orthogonal spectra]] with $G$-actions are \begin{itemize}% \item [[Stefan Schwede]], \emph{[[Lectures on Equivariant Stable Homotopy Theory]]}, 2015 (\href{http://www.math.uni-bonn.de/people/schwede/equivariant.pdf}{pdf}) \end{itemize} An alternative perspective on this is in \begin{itemize}% \item [[Mark Hovey]], [[David White]], \emph{An alternative approach to equivariant stable homotopy theory} (\href{http://arxiv.org/abs/1312.3846}{arXiv:1312.3846}) \end{itemize} Generalization from equivariance under [[compact Lie groups]] to [[compact topological groups]] (Hausdorff) and in particular to [[profinite groups]] and [[pro-homotopy theory]] is in \begin{itemize}% \item [[Halvard Fausk]], \emph{Equivariant homotopy theory for pro-spectra} (\href{http://arxiv.org/abs/math/0609635}{arXiv:math/0609635}) \end{itemize} The [[May recognition theorem]] for [[G-spaces]] and [[genuine G-spectra]] is discussed in \begin{itemize}% \item Costenoble and Warner, \emph{Fixed set systems of equivariant infinite loop spaces} Transactions of the American mathematical society, volume 326, Number 2 (1991) (\href{http://www.jstor.org/pss/2001770}{JSTOR}) \end{itemize} Characterization of [[G-spectra]] \href{spectrum+object#ViaExcisiveFunctors}{via excisive functors} on [[G-spaces]] is in \begin{itemize}% \item [[Andrew Blumberg]], \emph{Continuous functors as a model for the equivariant stable homotopy category} (\href{http://arxiv.org/abs/math.AT/0505512}{arXiv:math.AT/0505512}) \end{itemize} The characterization of $G$-equivariant functors in terms of topological [[Mackey functors]] is discussed in example 3.4 (i) of \begin{itemize}% \item [[Stefan Schwede]], [[Brooke Shipley]], \emph{Classification of stable model categories} (\href{http://hopf.math.purdue.edu/Schwede-Shipley/class.final.pdf}{pdf}) \end{itemize} A construction of equivariant stable homotopy theory in terms of [[spectral Mackey functors]] is due to \begin{itemize}% \item [[Bert Guillou]], [[Peter May]], \emph{Models of $G$-spectra as presheaves of spectra, (\href{http://arxiv.org/abs/1110.3571}{arXiv:1110.3571})} \emph{Permutative $G$-categories in equivariant infinite loop space theory (\href{http://arxiv.org/abs/1207.3459}{arXiv:1207.3459})} \end{itemize} see at \emph{[[spectral Mackey functor]]} for more references. A fully [[(∞,1)-category theory|(∞,1)-category theoretic]] formulation is i \begin{itemize}% \item [[Clark Barwick]], \emph{Spectral Mackey functors and equivariant algebraic K-theory (I)}, Adv. Math., 304:646–727 (\href{http://arxiv.org/abs/1404.0108}{arXiv:1404.0108}) \end{itemize} \end{document}