\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{etale morphism of schemes} \begin{quote}% This entry is about \'e{}tale morphisms between [[schemes]]. The term \emph{[[étale map]]} is preferred in the context of [[topology]] and [[differential geometry]], see [[étalé space]] for the topological version. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{tale_morphisms}{}\paragraph*{{\'E{}tale morphisms}}\label{tale_morphisms} [[!include etale morphisms - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{closure_properties}{Closure properties}\dotfill \pageref*{closure_properties} \linebreak \noindent\hyperlink{classes_of_examples}{Classes of examples}\dotfill \pageref*{classes_of_examples} \linebreak \noindent\hyperlink{AsLocallyConstantSheaves}{As locally constant sheaves}\dotfill \pageref*{AsLocallyConstantSheaves} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{\'e{}tale morphism of schemes} is the realization of the general notion of [[étale morphism]] for maps between [[schemes]], hence it captures roughly the idea of a map of schemes which is a [[local homeomorphism]]/[[local diffeomorphism]]. A central use of \'e{}tale morphisms of schemes is that they appear as [[coverings]] in the [[Grothendieck topology]] of the [[étale site]]. The [[abelian sheaf cohomology]] with respect to these \'e{}tale covers of schemes is accordingly called \emph{[[étale cohomology]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{EquivalentConditionsForEtale}\hypertarget{EquivalentConditionsForEtale}{} A [[morphism]] of [[schemes]] is an \textbf{\'e{}tale morphism} if the following equivalent conditions hold: \begin{enumerate}% \item it is \begin{enumerate}% \item [[smooth morphism of schemes|smooth]] \item [[unramified morphism|unramified]] \end{enumerate} \item it is \begin{enumerate}% \item [[smooth morphism of schemes|smooth]] \item of [[relative dimension]] $0$. \end{enumerate} \item it is \begin{enumerate}% \item [[flat morphism|flat]] \item [[unramified]]; \end{enumerate} \item it is \begin{enumerate}% \item [[formally étale morphism of schemes|formally étale]]; \item [[locally of finite presentation]] \end{enumerate} \end{enumerate} \end{defn} (A number of other equivalent definitions are listed at \href{http://en.wikipedia.org/wiki/Etale_morphism}{wikipedia}.) \begin{remark} \label{}\hypertarget{}{} For morphisms $f \colon X \longrightarrow Y$ between [[algebraic varieties]] over an [[algebraically closed field]] this means that for all points $p \in X$ the induced morphism on [[tangent cones]] \begin{displaymath} T_p X \longrightarrow T_{f(p)} Y \end{displaymath} is an [[isomorphism]]. This is analogous to the corresponding characterization of [[local diffeomorphisms]] of [[smooth manifolds]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Relaxing the finiteness condition in item 4 of \ref{EquivalentConditionsForEtale} yields the notion of \emph{[[weakly étale morphism]]}. [[étale morphism of schemes|étale morphism]] $\Rightarrow$ [[pro-étale morphism of schemes|pro-étale morphism]] $\Rightarrow$ [[weakly étale morphism of schemes|weakly étale morphism]] $\Rightarrow$ [[formally étale morphism of schemes|formally étale morphism]] \end{remark} \begin{defn} \label{}\hypertarget{}{} A jointly surjective collection of \'e{}tale morphisms $\{U_i \to X\}$ is called an [[étale cover]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} Most of the pairs of conditions in def. \ref{EquivalentConditionsForEtale} can be read as constraining the fiber of the morphism to be first suitably surjective/[[bundle]]-like ([[smooth morphism of schemes|smooth]], [[flat morphism|flat]]) and second suitably locally injective ([[unramified]]). Specifically the first condition has an [[infinitesimal object|infinitesimal anlog]]: a [[formally étale morphism]] is a [[formally smooth morphism|formally smooth]] and [[formally unramified morphism]]. These notions also have an interpretation in [[synthetic differential geometry]] and there they correspond to the statement that a [[local diffeomorphism]] is a [[submersion]] which is also an [[immersion of smooth manifolds]]. \end{remark} \begin{defn} \label{}\hypertarget{}{} A morphism is \textbf{[[formally étale morphism]]} if it is \begin{itemize}% \item [[formally smooth]] (satisfying an infinitesimal lifting property) \item and [[formally unramified]]. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} These are sheaf-like properties, which can be formalized in the language of [[Q-categories]] ([[monopresheaf]] and [[epipresheaf]] properties on the $Q$-category of nilpotent thickenings). See at \emph{[[differential cohesion]]} and at \emph{[[infinitesimal shape modality]]}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{closure_properties}{}\subsubsection*{{Closure properties}}\label{closure_properties} \begin{prop} \label{}\hypertarget{}{} \begin{itemize}% \item A [[composite]] of two \'e{}tale morphism is itself \'e{}tale. \item The [[pullback]] of an \'e{}tale morphism is \'e{}tale. \item If $f_1 \circ f_2$ is \'e{}tale and $f_1$ is, then so is $f_2$. \end{itemize} \end{prop} (e.g. \hyperlink{Milne}{Milne, prop. 2.11}) \begin{proof} Use that an \'e{}tale morphism is a [[formally étale morphism]] with finite fibers, and that $f \colon X \to Y$ is formally \'e{}tale precisely if the [[infinitesimal shape modality]] [[unit of a monad|unit]] [[natural transformation|naturality square]] \begin{displaymath} \itexarray{ X &\longrightarrow& \Pi_{inf}(X) \\ \downarrow && \downarrow \\ Y &\longrightarrow& \Pi_{inf}(Y) } \end{displaymath} is a [[pullback]] square. Then the three properties to be shown are equivalently the [[pasting law]] for pullback diagrams. \end{proof} \begin{prop} \label{}\hypertarget{}{} A [[smooth morphism of schemes]] is \'e{}tale iff there is an [[étale cover]] of the base scheme by [[open subschemes]] such that the pullback of the projection to each of them is an open local isomorphism of [[locally ringed spaces]] (and in particular, the pullback of the projection morphism is an [[étalé space|étale map]] of the corresponding underlying topological spaces). \end{prop} \begin{remark} \label{}\hypertarget{}{} This disjointness picture of \'e{}tale covers make them suitable for having nontrivial [[cohomology]] in situations where Zariski covers give vanishing cohomology. \end{remark} \hypertarget{classes_of_examples}{}\subsubsection*{{Classes of examples}}\label{classes_of_examples} \begin{prop} \label{}\hypertarget{}{} Let $k$ be a [[field]]. A morphism of [[scheme]]s $Y \to Spec k$ is \'e{}tale precisely if $Y$ is a [[coproduct]] $Y \simeq \coprod_i Spec k_i$ for each $k_i$ a finite and separable [[field extension]] of $k$. \end{prop} This appears for instance as \hyperlink{deJong}{de Jong, prop. 3.1 i)}. \begin{remark} \label{}\hypertarget{}{} Such \'e{}tale morphisms are classified by the classical [[Galois theory]] of field extensions. \end{remark} \begin{prop} \label{}\hypertarget{}{} A [[ring]] homomorphism of [[affine varieties]] $Spec(A) \to Spec(B)$ for $Spec(B)$ non-singular and for $A \simeq B[x_1, \cdots, x_n]/(f_1, \cdots, f_n)$ with [[polynomials]] $f_i$ is \'e{}tale precisel if the [[Jacobian]] $det(\frac{\partial f_i}{\partial x_j})$ is invertible. \end{prop} This appears for instance as (\hyperlink{Milne}{Milne, prop. 2.1}). \hypertarget{AsLocallyConstantSheaves}{}\subsubsection*{{As locally constant sheaves}}\label{AsLocallyConstantSheaves} \begin{prop} \label{}\hypertarget{}{} A [[sheaf]] $F$ on a scheme $X$ corresponds to an \'e{}tale morphism $Y \to X$ precisely if there is an [[étale cover]] $\{U_i \to X\}$ such that each restriction \begin{displaymath} F|_{U_i} \simeq LConst K_i \end{displaymath} is [[isomorphic]] to a [[constant sheaf]] on a [[set]] $K_i$. \end{prop} A proof is in (\hyperlink{Deligne}{Deligne}). \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} A finite separable [[field extension]] $K \hookrightarrow L$ corresponds dually to an \'e{}tale morphism $Spec L \to Spec K$. These are the morphisms classified by classical [[Galois theory]]. \end{example} \begin{example} \label{OpenImmersionIsEtale}\hypertarget{OpenImmersionIsEtale}{} Every [[open immersion of schemes]] is an \'e{}tale morphism of schemes. In particular a standard open inclusion (a [[cover]] in the [[Zariski topology]]) induced by the [[localization of a commutative ring]] \begin{displaymath} Spec(R[S^{-1}]) \longrightarrow Spec(R) \end{displaymath} is \'e{}tale. \end{example} (e.g. [[The Stacks Project|Stacks Project, lemma 28.37.9]]) \begin{proof} By one of the equivalent characterizations of [[étale morphism]] it is sufficient to check that the map $Spec(R[S^{-1}]) \longrightarrow Spec(R)$ is a [[formally étale morphism]] and [[locally of finite presentation]]. The latter is clear, since the very definition of \begin{displaymath} R[S^{-1}] = R[s_1^{-1}, \cdots, s_n^{-1}](s_1 s_1^{-1} - 1, \cdots , s_n s_n^{-1} - 1) \end{displaymath} exhibits a [[finitely presented algebra]] over $R$. To see that it is formally \'e{}tale we need to check that for every [[commutative ring]] $T$ with [[nilpotent ideal]] $J$ we have a [[pullback]] diagram \begin{displaymath} \itexarray{ Hom(R[S^{-1}], T) &\longrightarrow& Hom(R[S^{-1}],T/J) \\ \downarrow && \downarrow \\ Hom(R, T) &\longrightarrow& Hom(R, T/J) } \,. \end{displaymath} Now by the [[universal property]] of the [[localization of a commutative ring|localization]], a homomorphism $R[S^{-1}] \longrightarrow T$ is a homomorphism $R \longrightarrow T$ which sends all elements in $S \hookrightarrow R$ to invertible elements in $T$. But no element in a [[nilpotent ideal]] can be invertible, Therefore the fiber product of the bottom and right map is the set of maps from $R$ to $T$ such that $S$ is taken to invertibles, which is indeed the top left set. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[étale morphism]] \item \textbf{\'e{}tale morphism of schemes} \begin{itemize}% \item [[étale site]], [[étale cohomology]] \item [[étale (∞,1)-site]] \item [[étale morphism of E-∞ rings]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The classical references are \begin{itemize}% \item [[Pierre Deligne]] et al., \emph{Cohomologie \'e{}tale} , Lecture Notes in Mathematics, no. 569, Springer-Verlag, 1977. \end{itemize} \begin{itemize}% \item [[James Milne]], \emph{[[Étale Cohomology]]}, Princeton Mathematical Series \textbf{33}, 1980. xiii+323 pp. \end{itemize} Lecture notes include \begin{itemize}% \item [[James Milne]], section 2 of \emph{[[Lectures on Étale Cohomology]]} \end{itemize} \begin{itemize}% \item [[Aise Johan de Jong]], \emph{\'E{}tale cohomology} (\href{http://math.columbia.edu/~pugin/Teaching/Etale_files/EtaleCohomology.pdf}{pdf}) --- link broken, couldn't find another copy online \end{itemize} The local structure theorems are discussed in \begin{itemize}% \item Leovigildo Alonso, Ana Jeremias, Marta Perez, \emph{Local structure theorems for smooth maps of formal schemes} (\href{http://arxiv.org/abs/math/0605115}{arXiv:math/0605115}) \end{itemize} Discussion of etale morphisms between [[E-infinity rings]]/[[spectral schemes]] is in \begin{itemize}% \item [[Jacob Lurie]], section 8.5 of \emph{[[Higher Algebra]]} \end{itemize} and generally in [[E-∞ geometry]] in \begin{itemize}% \item [[Jacob Lurie]], section 1.2 of \emph{[[Quasi-Coherent Sheaves and Tannaka Duality Theorems]]} \end{itemize} [[!redirects étale morphism of schemes]] [[!redirects etale morphisms of schemes]] [[!redirects étale morphisms of schemes]] \end{document}