\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{evolutionary derivative} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{variational_calculus}{}\paragraph*{{Variational calculus}}\label{variational_calculus} [[!include variational calculus - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{evolutionary derivative} or ``[[Fréchet derivative]] of a [[tuple]] of differential functions'' (\hyperlink{Olver93}{Olver 93, def. 5.24})) is the [[derivative]] of a [[section]] of some [[vector bundle]] $V$ depending on [[jets]] of a ``[[field bundle]]'' $E$ (def. \ref{FieldDependentSections} below) along the prolongation of an [[evolutionary vector field]] on $E$. Equivalently this is a jet-dependent [[differential operator]] on the [[vertical tangent bundle]] of $E$ and as such is usefully related to the [[Euler-Lagrange derivative]] on $E$ (example \ref{DifferentialOperatorDerivativeOfLagrangianFunction} and prop. \ref{EulerLagrangeDerivativeIsDerivationViaAdjointFrechetDerivatives} below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In the following \emph{[[fiber bundles]]} are considered in [[differential geometry]] and in particular \emph{[[vector bundle]]} means \emph{[[smooth vector bundle]]}. \begin{defn} \label{FieldDependentSections}\hypertarget{FieldDependentSections}{} \textbf{([[field (physics)|field]]-dependent [[sections]])} For \begin{displaymath} E \overset{fb}{\longrightarrow} \Sigma \end{displaymath} a [[fiber bundle]], regarded as a [[field bundle]], and for \begin{displaymath} E' \overset{fb'}{\longrightarrow} \Sigma \end{displaymath} any other [[fiber bundle]] over the same base space ([[spacetime]]), we write \begin{displaymath} \Gamma_{J^\infty_\Sigma(E)}(E') \;\coloneqq\; \Gamma_{J^\infty_\Sigma(E)}( jb^\ast E' ) \;=\; Hom_\Sigma(J^\infty_\Sigma(E), E') \;\simeq\; DiffOp(E,E') \end{displaymath} for the [[space of sections]] of the [[pullback of bundles]] of $E'$ to the [[jet bundle]] $J^\infty_\Sigma(E) \overset{jb}{\longrightarrow} \Sigma$ along $jb$. \begin{displaymath} \Gamma_{J^\infty_\Sigma(E)}(E') \;=\; \left\{ \itexarray{ && E' \\ & {}^{\mathllap{}}\nearrow & \downarrow \mathrlap{fb'} \\ J^\infty_\Sigma(E) &\underset{jb}{\longrightarrow}& \Sigma } \phantom{A}\,\, \right\} \,. \end{displaymath} (Equivalently this is the space of [[differential operators]] from sections of $E$ to sections of $E'$. ) \end{defn} In (\hyperlink{Olver93}{Olver 93, section 5.1, p. 288}) the field dependent sections of def. \ref{FieldDependentSections}, considered in [[local coordinates]], are referred to as [[tuples]] of \emph{differential functions}. \begin{example} \label{EvolutionaryVectorFieldsAsFieldDependentSections}\hypertarget{EvolutionaryVectorFieldsAsFieldDependentSections}{} \textbf{([[source forms]] and [[evolutionary vector fields]] are field-dependent sections)} For $E \overset{fb}{\to} \Sigma$ a [[field bundle]], write $T_\Sigma E$ for its [[vertical tangent bundle]] and $T_\Sigma^\ast E$ for its [[dual vector bundle]], the [[vertical cotangent bundle]]. Then the field-dependent sections of these bundles according to def. \ref{FieldDependentSections} are identified as follows: \begin{itemize}% \item the space $\Gamma_{J^\infty_\Sigma(E)}(T_\Sigma E)$ contains the space of [[evolutionary vector fields]] $v$ as those bundle morphism which respect not just the projection to $\Sigma$ but also its factorization through $E$: \begin{displaymath} \left( \itexarray{ && T_\Sigma E \\ & {}^{\mathllap{v}}\nearrow & \downarrow^{\mathrlap{tb_\Sigma}} \\ J^\infty_\Sigma(E) &\underset{jb_{\infty,0}}{\longrightarrow}& E & \overset{fb}{\longrightarrow}& \Sigma } \right) \;\in\; \Gamma_{J^\infty_\Sigma(E)}(T_\Sigma E) \end{displaymath} \item $\Gamma_{J^\infty_\Sigma(E)}( T^\ast_\Sigma E) \otimes \wedge^{p+1}_\Sigma(T^\ast \Sigma)$ contains the space of [[source forms]] $E$ as those bundle morphisms which respect not just the projection to $\Sigma$ but also its factorization through $E$: \begin{displaymath} \left( \itexarray{ && T^\ast_\Sigma E \\ & {}^{E}\nearrow & \downarrow^{\mathrlap{ctb_\Sigma}} \\ J^\infty_\Sigma(E) &\underset{jb_{\infty,0}}{\longrightarrow}& E & \overset{fb}{\longrightarrow}& \Sigma } \right) \;\in\; \Gamma_{J^\infty_\Sigma(E)}(T^\ast_\Sigma E) \end{displaymath} \end{itemize} This makes manifest the duality pairing between [[source forms]] and [[evolutionary vector fields]] \begin{displaymath} \itexarray{ \Gamma_{J^\infty_\Sigma(E)}(T_\Sigma E) \otimes \Gamma_{J^\infty_\Sigma(E)}(T^\ast_\Sigma E) &\longrightarrow& C^\infty(J^\infty_\Sigma(E)) } \end{displaymath} which in local coordinates is given by \begin{displaymath} (v^a \partial_{\phi^a} \,,\, \omega_a \delta \phi^a) \mapsto v^a \omega_a \end{displaymath} for $v^a, \omega_a \in C^\infty(J^\infty_\Sigma(E))$ [[smooth functions]] on the [[jet bundle]]. \end{example} \begin{defn} \label{FieldDependentDifferentialOperatorDerivative}\hypertarget{FieldDependentDifferentialOperatorDerivative}{} \textbf{([[evolutionary derivative of field-dependent section]])} Let \begin{displaymath} E \overset{fb}{\to} \Sigma \end{displaymath} be a [[fiber bundle]] regarded as a [[field bundle]] and let \begin{displaymath} V \overset{vb}{\to} \Sigma \end{displaymath} be a [[vector bundle]]. Then for \begin{displaymath} P \in \Gamma_{J^\infty_\Sigma(E)}(V) \end{displaymath} a field-dependent section of $E$ accoring to def. \ref{FieldDependentSections}, its \emph{evolutionary derivative} is the morphism \begin{displaymath} \itexarray{ \Gamma_{J^\infty_\Sigma(E)}(T_\Sigma E) & \overset{ \mathrm{D}P }{\longrightarrow} & \Gamma_{J^\infty_\Sigma(E)}(V) \\ v &\mapsto& \hat v(P) } \end{displaymath} which, under the identification of example \ref{EvolutionaryVectorFieldsAsFieldDependentSections}, sense an [[evolutionary vector field]] $v$ to the [[derivative]] of $P$ along the prolongation [[tangent vector field]] $\hat v$ of $v$. In the case that $E$ and $V$ are [[trivial vector bundles]] over [[Minkowski spacetime]] with coordinates $((x^\mu), (\phi^a))$ and $((x^\mu), (\rho^b))$, respectively, then this is given by \begin{displaymath} ((\mathrm{D}P)(v))^b \;=\; \left( v^a \frac{\partial P^b}{\partial \phi^a} + \frac{d v^a}{d x^\mu} \frac{\partial P^b}{\partial \phi^a_{,\mu}} + \frac{d^2 v^a}{d x^\mu d x^\nu} \frac{\partial P^b}{\partial \phi^a_{,\mu \nu}} + \cdots \right) \end{displaymath} This makes manifest that $\mathrm{D}P$ may equivalently be regarded as a $J^\infty_\Sigma(E)$-dependent [[differential operator]] from the [[vertical tangent bundle]] $T_\Sigma E$ to $V$, namely a morphism of the form \begin{displaymath} \mathrm{D}_P \;\colon\; J^\infty_\Sigma(E) \times_\Sigma J^\infty_\Sigma T_\Sigma E \longrightarrow V \end{displaymath} in that \begin{equation} \mathrm{D}_P(-,v) = \mathrm{D}P(v) = \hat v (P) \,. \label{FrechetDerivativeAsDifferentialOperatorEquality}\end{equation} \end{defn} (\hyperlink{Olver93}{Olver 93, def. 5.24}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{DifferentialOperatorDerivativeOfLagrangianFunction}\hypertarget{DifferentialOperatorDerivativeOfLagrangianFunction}{} \textbf{([[evolutionary derivative]] of [[Lagrangian function]])} Over a ([[pseudo-Riemannian manifold|pseudo]]-)[[Riemannian manifold]] $\Sigma$, let $\mathbf{L} = L dvol \in \Omega^{p,0}_\Sigma(E)$ be a [[Lagrangian density]], with coefficient function regarded as a field-dependent section (def. \ref{FieldDependentSections}) of the [[trivial bundle|trivial]] [[real line bundle]]: \begin{displaymath} L \;\in \; \Gamma_{J^\infty_\Sigma}(E)(\Sigma \times \mathbb{R}) \,, \end{displaymath} Then the [[formally adjoint differential operator]] \begin{displaymath} (\mathrm{D}_L)^\ast \;\colon\; J^\infty_\Sigma(E)\times_\Sigma (\Sigma \times \mathbb{R})^\ast \longrightarrow T_\Sigma^\ast E \end{displaymath} of its [[evolutionary derivative]], def. \ref{FieldDependentDifferentialOperatorDerivative}, regarded as a $J^\infty_\Sigma(E)$-dependent differential operator $\mathrm{D}_P$ from $T_\Sigma$ to $V$ and applied to the constant section \begin{displaymath} 1 \in \Gamma_\Sigma(\Sigma \times \mathbb{R}^\ast) \end{displaymath} is the [[Euler-Lagrange derivative]] \begin{displaymath} \delta_{EL}\mathbf{L} \;=\; \left(\mathrm{D}_{L}\right)^\ast(1) \;\in\; \Gamma_{J^\infty_\Sigma(E)}(T_\Sigma^\ast) \simeq \Omega^{p+1,1}_\Sigma(E)_{source} \end{displaymath} via the identification from example \ref{EvolutionaryVectorFieldsAsFieldDependentSections}. \end{example} (\hyperlink{Olver93}{Olver 93, above (5.80)}) \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{EulerLagrangeDerivativeIsDerivationViaAdjointFrechetDerivatives}\hypertarget{EulerLagrangeDerivativeIsDerivationViaAdjointFrechetDerivatives}{} \textbf{([[Euler-Lagrange derivative]] is [[derivation]] via [[evolutionary derivatives]])} Let $V \overset{vb}{\to} \Sigma$ be a [[vector bundle]] and write $V^\ast \overset{}{\to} \Sigma$ for its [[dual vector bundle]]. For field-dependent sections (def. \ref{FieldDependentSections}) \begin{displaymath} \alpha \in \Gamma_{J^\infty_\Sigma(E)}(V) \end{displaymath} and \begin{displaymath} \beta^\ast \in \Gamma_{J^\infty_\Sigma(E)}(V^\ast) \end{displaymath} we have that the [[Euler-Lagrange derivative]] of their canonical pairing to a [[smooth function]] on the [[jet bundle]] is the sum of the derivative of either one via the [[formally adjoint differential operator]] of the [[evolutionary derivative]] (def. \ref{FieldDependentDifferentialOperatorDerivative}) of the other: \begin{displaymath} \delta_{EL}( \alpha \cdot \beta^\ast ) \;=\; (\mathrm{D}_\alpha)^\ast(\beta^\ast) + (\mathrm{D}_{\beta^\ast})^\ast(\alpha) \end{displaymath} \end{prop} (\hyperlink{Olver93}{Olver 93 (5.80)}) \begin{proof} It is sufficient to check this in [[local coordinates]]. By the [[product law]] for [[differentiation]] we have \begin{displaymath} \begin{aligned} \frac{ \delta_{EL} \left(\alpha \cdot \beta^\ast \right) } { \delta \phi^a } & = \frac{\partial \left(\alpha \cdot \beta^\ast \right)}{\partial \phi^a} - \frac{d}{d x^\mu} \left( \frac{\partial \left( \alpha \cdot \beta^\ast \right)}{\partial \phi^a_{,\mu}} \right) + \frac{d}{d x^\mu d x^\nu} \left( \frac{\partial \left( \alpha \cdot \beta^\ast \right) }{\partial \phi^a_{,\mu \nu}} \right) - \cdots \\ & = \phantom{+} \frac{\partial \alpha }{\partial \phi^a} \cdot \beta^\ast - \frac{d}{d x^\mu} \left( \frac{\partial \alpha }{\partial \phi^a_{,\mu}} \cdot \beta^\ast \right) + \frac{d}{d x^\mu d x^\nu} \left( \frac{\partial \alpha }{\partial \phi^a_{,\mu \nu}} \cdot \beta^\ast \right) - \cdots \\ & \phantom{=} + \frac{\partial \beta^\ast }{\partial \phi^a} \cdot \alpha - \frac{d}{d x^\mu} \left( \frac{\partial \beta^\ast }{\partial \phi^a_{,\mu}} \cdot \alpha \right) + \frac{d}{d x^\mu d x^\nu} \left( \frac{\partial \beta^\ast }{\partial \phi^a_{,\mu \nu}} \cdot \alpha \right) - \cdots \\ & = (\mathrm{D}_\alpha)^\ast(\beta^\ast) + (\mathrm{D}_{\beta^\ast})^\ast(\alpha) \end{aligned} \end{displaymath} \end{proof} \begin{prop} \label{EvolutionaryDerivativeOfEulerLagrangeFormIsFormallySelfAdjoint}\hypertarget{EvolutionaryDerivativeOfEulerLagrangeFormIsFormallySelfAdjoint}{} \textbf{([[evolutionary derivative]] of [[Euler-Lagrange forms]] is [[formally self-adjoint differential operator|formally self-adjoint]])} Let $(E,\mathbf{L})$ be a [[Lagrangian field theory]] over [[Minkowski spacetime]] and regard the [[Euler-Lagrange derivative]] \begin{displaymath} \delta_{EL}\mathbf{L} \;=\; \delta_{EL}L \wedge dvol_\Sigma \end{displaymath} as a field-dependent section of the [[vertical cotangent bundle]] \begin{displaymath} \delta_{EL}L \;\in\; \Gamma_{J^\infty_\Sigma(E)}(T^\ast_\Sigma E) \end{displaymath} as in example \ref{EvolutionaryVectorFieldsAsFieldDependentSections}. Then the corresponding [[evolutionary derivative]] field-dependent [[differential operator]] $D_{\delta_{EL}L}$ (def. \ref{FieldDependentDifferentialOperatorDerivative}) is [[formally self-adjoint differential operator|formally self-adjoint]]: \begin{displaymath} (D_{\delta_{EL}L})^\ast \;=\; D_{\delta_{EL}L} \end{displaymath} \end{prop} (\hyperlink{Olver93}{Olver 93, theorem 5.92}) \begin{prop} \label{EvolutionaryDerivativeOfEulerLagrangeFormIsFormallySelfAdjoint}\hypertarget{EvolutionaryDerivativeOfEulerLagrangeFormIsFormallySelfAdjoint}{} \textbf{([[evolutionary derivative]] of [[Euler-Lagrange forms]] is [[formally self-adjoint differential operator|formally self-adjoint]])} Let $(E,\mathbf{L})$ be a [[Lagrangian field theory]] over [[Minkowski spacetime]] and regard the [[Euler-Lagrange derivative]] \begin{displaymath} \delta_{EL}\mathbf{L} \;=\; \delta_{EL}L \wedge dvol_\Sigma \end{displaymath} as a field-dependent section of the [[vertical cotangent bundle]] \begin{displaymath} \delta_{EL}L \;\in\; \Gamma_{J^\infty_\Sigma(E)}(T^\ast_\Sigma E) \end{displaymath} as in example \ref{EvolutionaryVectorFieldsAsFieldDependentSections}. Then the corresponding [[evolutionary derivative]] field-dependent [[differential operator]] $D_{\delta_{EL}L}$ (def. \ref{FieldDependentDifferentialOperatorDerivative}) is [[formally self-adjoint differential operator|formally self-adjoint]]: \begin{displaymath} (D_{\delta_{EL}L})^\ast \;=\; D_{\delta_{EL}L} \end{displaymath} \end{prop} (\href{evolutionary+derivative#Olver93}{Olver 93, theorem 5.92}) The following proof is due to [[Igor Khavkine]]. \begin{proof} By definition of the [[Euler-Lagrange form]] we have \begin{displaymath} \frac{\delta_{EL} L }{\delta \phi^a} \delta \phi^a \, \wedge dvol_\Sigma \;=\; \delta L \,\wedge dvol_\Sigma \;+\; d(...) \,. \end{displaymath} Applying the [[variational derivative]] $\delta$ to both sides of this equation yields \begin{displaymath} \left(\delta \frac{\delta_{EL} L }{\delta \phi^a}\right) \wedge \delta \phi^a \, \wedge dvol_\Sigma \;=\; \underset{= 0}{\underbrace{\delta \delta L}} \wedge dvol_\Sigma \;+\; d(...) \,. \end{displaymath} It follows that for $v,w$ any two [[evolutionary vector fields]] the contraction of their prolongations $\hat v$ and $\hat w$ into the [[variational differential form|differential 2-form]] on the left is \begin{displaymath} \left( \delta \frac{\delta_{EL} L }{\delta \phi^a} \wedge \delta \phi^a \right)(v,w) = w^a (\mathrm{D}_{\delta_{EL}})_a(v) - v^b(\mathrm{D}_{\delta_{EL}})_b(w) \,, \end{displaymath} by inspection of the definition of the [[evolutionary derivative]] (def. \ref{FieldDependentDifferentialOperatorDerivative}) and their contraction into the form on the right is \begin{displaymath} \iota_{\hat v} \iota_{\hat w} d(...) \;=\; d(...) \end{displaymath} by the fact (prop. \ref{EvolutionaryVectorFieldProlongation}) that contraction with prolongations of evolutionary vector fields coommutes with the [[total spacetime derivative]]. Hence the last two equations combined give \begin{displaymath} w^a (\mathrm{D}_{\delta_{EL}})_a(v) - v^b(\mathrm{D}_{\delta_{EL}})_b(w) \;=\; d(...) \,. \end{displaymath} This is the defining condition for $\mathrm{D}_{\delta_{EL}}$ to be [[formally self-adjoint differential operator]]. \end{proof} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Olver]], \emph{Applications of Lie groups to Differential equations}, Graduate Texts in Mathematics, Springer 1993 \item [[Glenn Barnich]], equation(3) of \emph{A note on gauge systems from the point of view of Lie algebroids}, in P. Kielanowski, V. Buchstaber, A. Odzijewicz, M.. Schlichenmaier, T Voronov, (eds.) XXIX Workshop on Geometric Methods in Physics, vol. 1307 of AIP Conference Proceedings, 1307, 7 (2010) (\href{https://arxiv.org/abs/1010.0899}{arXiv:1010.0899}, \href{https://doi.org/10.1063/1.3527427}{doi:/10.1063/1.3527427}) \item [[Igor Khavkine]], starting with p. 45 of \emph{Characteristics, Conal Geometry and Causality in Locally Covariant Field Theory} (\href{https://arxiv.org/abs/1211.1914}{arXiv:1211.1914}) \end{itemize} [[!redirects evolutionary derivatives]] [[!redirects evolutionary derivative of field-dependent section]] [[!redirects evoolutionary derivatives of field-dependent sections]] \end{document}