\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exact couple} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{exact_couples}{Exact couples}\dotfill \pageref*{exact_couples} \linebreak \noindent\hyperlink{SpectralSequencesFromExactCouples}{Spectral sequences from exact couples}\dotfill \pageref*{SpectralSequencesFromExactCouples} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExactCoupleOfATowerOfFibrations}{Exact couple of a tower of (co)-fibrations}\dotfill \pageref*{ExactCoupleOfATowerOfFibrations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Exact couples} are a way to encode data that makes a [[spectral sequence]], specially adapted to the case that the underlying filtering along which the spectral sequence proceeds is induced from a tower of [[homotopy fibers]], such as a [[Postnikov tower]] or [[Adams tower]] (see also at \emph{[[Adams spectral sequence]]}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{exact_couples}{}\subsubsection*{{Exact couples}}\label{exact_couples} \begin{defn} \label{}\hypertarget{}{} Given an [[abelian category]] $\mathcal{C}$, an \textbf{[[exact couple]]} in $\mathcal{C}$ is a cyclic [[long exact sequence]] of three [[morphisms]] among two [[objects]] of the form \begin{displaymath} \cdots \stackrel{k}{\longrightarrow} E \overset{j}{\to} D \overset{\varphi}{\longrightarrow} D \overset{k}{\to} E \overset{j}{\longrightarrow} \cdots \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} This being cyclic, it is usually depicted as a triangle \begin{displaymath} \itexarray{ D && \stackrel{\varphi}{\longrightarrow} && D \\ & {}_{\mathllap{j}}\nwarrow && \swarrow_{\mathrlap{k}} \\ && E } \end{displaymath} \end{remark} The archetypical example from which this and the following definition draw their meaning is example \ref{ExactCoupleOfATower} below. \hypertarget{SpectralSequencesFromExactCouples}{}\subsubsection*{{Spectral sequences from exact couples}}\label{SpectralSequencesFromExactCouples} \begin{defn} \label{CohomologySpectralSequence}\hypertarget{CohomologySpectralSequence}{} A \emph{cohomology [[spectral sequence]]} $\{E_r^{p,q}, d_r\}$ is \begin{enumerate}% \item a sequence $\{E_r^{\bullet,\bullet}\}$ $r \in \mathbb{Z}$, $r \geq 2$ of [[bigraded object|bigraded]] [[abelian groups]]; \item a sequence of [[differentials]] $\{d_r \colon E_r^{\bullet,\bullet} \longrightarrow E_r^{\bullet+r, \bullet-r+1}\}$ \end{enumerate} such that \begin{itemize}% \item $H_{r+1}^{\bullet,\bullet}$ is the [[cochain cohomology]] of $d_r$:, i.e. $E_{r+1}^{\bullet, \bullet} = H(E_r^{\bullet,\bullet},d_r)$. \end{itemize} Given a $\mathbb{Z}$-[[graded abelian group]]\_ $C^\bullet$ equipped with a decreasing [[filtration]] \begin{displaymath} C^\bullet \supset \cdots \supset F^s C^\bullet \supset F^{s+1} C^\bullet \supset \cdots \supset 0 \end{displaymath} such that \begin{displaymath} C^\bullet = \underset{s}{\cup} F^s C^\bullet \;\;\;\; and \;\;\;\; 0 = \underset{s}{\cap} F^s C^\bullet \end{displaymath} then the spectral sequence is said to \emph{converge} to $C^\bullet$, denoted, \begin{displaymath} E_2^{\bullet,\bullet} \Rightarrow C^\bullet \end{displaymath} if \begin{enumerate}% \item in each bidegree $(s,t)$ the sequence $\{E_r^{s,t}\}_r$ eventually becomes constant on a group $E_\infty^{s,t} \coloneqq E_{\gg 1}^{s,t}$; \item $E_\infty^{\bullet,\bullet}$ is the [[associated graded]] of the filtered $C^\bullet$ in that $E_\infty^{s,t} \simeq F^s C^{s+t} / F^{s+1}C^{s+t}$. \end{enumerate} The converging spectral sequence is called \emph{multiplicative} if \begin{enumerate}% \item $\{E_2^{\bullet,\bullet}\}$ is equipped with the structure of a [[bigraded object]] [[associative algebra|algebra]]; \item $F^\bullet C^\bullet$ is equipped with the structure of a filtered [[graded algebra]] ($F^p C^k \cdot F^q C^l \subset F^{p+q} C^{k+l}$); \end{enumerate} such that \begin{enumerate}% \item each $d_{r}$ is a [[derivation]] with respect to the (induced) algebra structure on ${E_r^{\bullet,\bullet}}$, graded of degree 1 with respect to total degree; \item the multiplication on $E_\infty^{\bullet,\bullet}$ is compatible with that on $C^\bullet$. \end{enumerate} \end{defn} \begin{defn} \label{ExactCoupleAndDerivedExactCouple}\hypertarget{ExactCoupleAndDerivedExactCouple}{} \textbf{(derived exact couples)} An \emph{[[exact couple]]} is three [[homomorphisms]] of [[abelian groups]] of the form \begin{displaymath} \itexarray{ D && \stackrel{g}{\longrightarrow} && D \\ & {}_{\mathllap{f}}\nwarrow && \swarrow_{\mathrlap{h}} \\ && E } \end{displaymath} such that the [[image]] of one is the [[kernel]] of the next. \begin{displaymath} im(h) = ker(f)\,,\;\;\; im(f) = ker(g)\,, \;\;\; im(g) = ker(h) \,. \end{displaymath} Given an exact couple, then its \emph{derived exact couple} is \begin{displaymath} \itexarray{ im(g) && \stackrel{g}{\longrightarrow} && im(g) \\ & {}_{\mathllap{f}}\nwarrow && \swarrow_{\mathrlap{h \circ g^{-1}}} \\ && H(E, h \circ f) } \,. \end{displaymath} \end{defn} Here and in the following we write $g^{-1}$ etc. for the operation of choosing a [[preimage]] under a given function $g$. In each case it is left implicit that the given expression is independent of which choice is made. \begin{prop} \label{CohomologicalSpectralSequenceOfAnExactCouple}\hypertarget{CohomologicalSpectralSequenceOfAnExactCouple}{} \textbf{(cohomological spectral sequence of an exact couple)} Given an exact couple, def. \ref{ExactCoupleAndDerivedExactCouple}, \begin{displaymath} \itexarray{ D_1 && \stackrel{g_1}{\longrightarrow} && D_1 \\ & {}_{\mathllap{f_1}}\nwarrow && \swarrow_{\mathrlap{h_1}} \\ && E_1 } \end{displaymath} its derived exact couple \begin{displaymath} \itexarray{ D_2 && \stackrel{g_2}{\longrightarrow} && D_2 \\ & {}_{\mathllap{f_2}}\nwarrow && \swarrow_{\mathrlap{h_2}} \\ && E_2 } \end{displaymath} is itself an exact couple. Accordingly there is induced a sequence of exact couples \begin{displaymath} \itexarray{ D_r && \stackrel{g_r}{\longrightarrow} && D_r \\ & {}_{\mathllap{f_r}}\nwarrow && \swarrow_{\mathrlap{h_r}} \\ && E_r } \,. \end{displaymath} If the abelian groups $D$ and $E$ are equipped with [[bigraded object|bigrading]] such that \begin{displaymath} deg(f) = (0,0)\,,\;\;\;\; deg(g) = (-1,1)\,,\;\;\; deg(h) = (1,0) \end{displaymath} then $\{E_r^{\bullet,\bullet}, d_r\}$ with \begin{displaymath} \begin{aligned} d_r & \coloneqq h_r \circ f_r \\ & = h \circ g^{-r+1} \circ f \end{aligned} \end{displaymath} is a cohomological spectral sequence, def. \ref{CohomologySpectralSequence}. (As before in prop. \ref{CohomologicalSpectralSequenceOfAnExactCouple}, the notation $g^{-n}$ with $n \in \mathbb{N}$ denotes the function given by choosing, on representatives, a [[preimage]] under $g^n = \underset{n\;times}{\underbrace{g \circ \cdots \circ g \circ g}}$, with the implicit claim that all possible choices represent the same equivalence class.) If for every bidegree $(s,t)$ there exists $R_{s,t} \gg 1$ such that for all $r \geq R_{s,t}$ \begin{enumerate}% \item $g \colon D^{s+R,t-R} \stackrel {\simeq}{\longrightarrow} D^{s+R -1, t-R-1}$; \item $g\colon D^{s-R+1, t+R-2} \stackrel{0}{\longrightarrow} D^{s-R,t+R-1}$ \end{enumerate} then this spectral sequence converges to the [[inverse limit]] group \begin{displaymath} G^\bullet \coloneqq \underset{}{\lim} \left( \cdots \stackrel{g}{\to} D^{s,\bullet-s} \stackrel{g}{\longrightarrow} D^{s-1, \bullet - s + 1} \stackrel{g}{\to} \cdots \right) \end{displaymath} filtered by \begin{displaymath} F^p G^\bullet \coloneqq ker(G^\bullet \to D^{p-1, \bullet - p+1}) \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Kochmann96}{Kochmann 96, lemma 2.6.2}) \begin{proof} We check the claimed form of the $E_\infty$-page: Since $ker(h) = im(g)$ in the exact couple, the kernel \begin{displaymath} ker(d_{r-1}) \coloneqq ker(h \circ g^{-r+2} \circ f) \end{displaymath} consists of those elements $x$ such that $g^{-r+2} (f(x)) = g(y)$, for some $y$, hence \begin{displaymath} ker(d_{r-1})^{s,t} \simeq f^{-1}(g^{r-1}(D^{s+r-1,t-r+1})) \,. \end{displaymath} By assumption there is for each $(s,t)$ an $R_{s,t}$ such that for all $r \geq R_{s,t}$ then $ker(d_{r-1})^{s,t}$ is independent of $r$. Moreover, $im(d_{r-1})$ consists of the image under $h$ of those $x \in D^{s-1,t}$ such that $g^{r-2}(x)$ is in the image of $f$, hence (since $im(f) = ker(g)$ by exactness of the exact couple) such that $g^{r-2}(x)$ is in the kernel of $g$, hence such that $x$ is in the kernel of $g^{r-1}$. If $r \gt R$ then by assumption $g^{r-1}|_{D^{s-1,t}} = 0$ and so then $im(d_{r-1}) = im(h)$. (Beware this subtlety: while $g^{R_{s,t}}|_{D^{s-1,t}}$ vanishes by the convergence assumption, the expression $g^{R_{s,t}}|_{D^{s+r-1,t-r+1}}$ need not vanish yet. Only the higher power $g^{R_{s,t}+ R_{s+1,t+2}+2}|_{D^{s+r-1,t-r+1}}$ is again guaranteed to vanish. ) It follows that \begin{displaymath} \begin{aligned} E_\infty^{p,n-p} & = ker(d_R)/im(d_R) \\ & \simeq f^{-1}(im(g^{R-1}))/im(h) \\ & \simeq f^{-1}(im(g^{R-1}))/ker(f) \\ & \underoverset{\simeq}{f}{\longrightarrow} im(g^{R-1}) \cap im(f) \\ & \simeq im(g^{R-1}) \cap ker(g) \end{aligned} \end{displaymath} where in last two steps we used once more the exactness of the exact couple. (Notice that the above equation means in particular that the $E_\infty$-page is a sub-group of the image of the $E_1$-page under $f$.) The last group above is that of elements $x \in G^n$ which map to zero in $D^{p-1,n-p+1}$ and where two such are identified if they agree in $D^{p,n-p}$, hence indeed \begin{displaymath} E_\infty^{p,n-p} \simeq F^p G^n / F^{p+1} G^n \,. \end{displaymath} \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExactCoupleOfATowerOfFibrations}{}\subsubsection*{{Exact couple of a tower of (co)-fibrations}}\label{ExactCoupleOfATowerOfFibrations} \ldots{}[[spectral sequence of a tower of fibrations]]\ldots{} \begin{defn} \label{FilteredSpectrum}\hypertarget{FilteredSpectrum}{} A [[filtered spectrum]] is a [[spectrum]] $X$ equipped with a sequence $X_\bullet \colon (\mathbb{N}, \gt) \longrightarrow Spectra$ of spectra of the form \begin{displaymath} \cdots \longrightarrow X_3 \stackrel{f_2}{\longrightarrow} X_2 \stackrel{f_1}{\longrightarrow} X_1 \stackrel{f_0}{\longrightarrow} X_0 = X \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} More generally a [[filtered object in an (infinity,1)-category|filtering]] on an object $X$ in (stable or not) [[homotopy theory]] is a $\mathbb{Z}$-graded sequence $X_\bullet$ such that $X$ is the [[homotopy colimit]] $X\simeq \underset{\longrightarrow}{\lim} X_\bullet$. But for the present purpose we stick with the simpler special case of def. \ref{FilteredSpectrum}. \end{remark} \begin{remark} \label{}\hypertarget{}{} There is \emph{no} condition on the [[morphisms]] in def. \ref{FilteredSpectrum}. In particular, they are \emph{not} required to be [[n-monomorphisms]] or [[n-epimorphisms]] for any $n$. On the other hand, while they are also not explicitly required to have a presentation by [[cofibrations]] or [[fibrations]], this follows automatically: by the existence of [[model structures for spectra]], every filtering on a spectrum is equivalent to one in which all morphisms are represented by [[cofibrations]] or by [[fibrations]]. This means that we may think of a filtration on a spectrum $X$ in the sense of def. \ref{FilteredSpectrum} as equivalently being a [[tower of fibrations]] over $X$. \end{remark} The following remark \ref{UnrolledExactCoupleOfAFiltrationOnASpectrum} unravels the structure encoded in a filtration on a spectrum, and motivates the concepts of [[exact couples]] and their [[spectral sequences]] from these. \begin{remark} \label{UnrolledExactCoupleOfAFiltrationOnASpectrum}\hypertarget{UnrolledExactCoupleOfAFiltrationOnASpectrum}{} Given a [[filtered spectrum]] as in def. \ref{FilteredSpectrum}, write $A_k$ for the [[homotopy cofiber]] of its $k$th stage, such as to obtain the diagram \begin{displaymath} \itexarray{ \cdots &\stackrel{}{\longrightarrow}& X_3 &\stackrel{f_2}{\longrightarrow}& X_2 &\stackrel{f_2}{\longrightarrow} & X_1 &\stackrel{f_1}{\longrightarrow}& X \\ && \downarrow && \downarrow && \downarrow && \downarrow \\ && A_3 && A_2 && A_1 && A_0 } \end{displaymath} where each stage \begin{displaymath} \itexarray{ X_{k+1} &\stackrel{f_k}{\longrightarrow}& X_k \\ && \downarrow^{\mathrlap{cofib(f_k)}} \\ && A_k } \end{displaymath} is a [[homotopy fiber sequence]]. To break this down into invariants, apply the [[stable homotopy groups]]-[[functor]]. This yields a diagram of $\mathbb{Z}$-[[graded abelian groups]] of the form \begin{displaymath} \itexarray{ \cdots &\stackrel{}{\longrightarrow}& \pi_\bullet(X_3) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow}& \pi_\bullet(X_2) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow} & \pi_\bullet(X_1) &\stackrel{\pi_\bullet(f_1)}{\longrightarrow}& \pi_\bullet(X_0) \\ && \downarrow && \downarrow && \downarrow && \downarrow \\ && \pi_\bullet(A_3) && \pi_\bullet(A_2) && \pi_\bullet(A_1) && \pi_\bullet(A_0) } \,. \end{displaymath} Here each hook at stage $k$ extends to a [[long exact sequence of homotopy groups]] via [[connecting homomorphisms]] $\delta_\bullet^k$ \begin{displaymath} \cdots \to \pi_{\bullet+1}(A_k) \stackrel{\delta_{\bullet+1}^k}{\longrightarrow} \pi_\bullet(X_{k+1}) \stackrel{\pi_\bullet(f_k)}{\longrightarrow} \pi_\bullet(X_k) \stackrel{}{\longrightarrow} \pi_\bullet(A_k) \stackrel{\delta_\bullet^k}{\longrightarrow} \pi_{\bullet-1}(X_{k+1}) \to \cdots \,. \end{displaymath} If we understand the [[connecting homomorphism]] \begin{displaymath} \delta_k \colon \pi_\bullet(A_k) \longrightarrow \pi_\bullet(X_{k+1}) \end{displaymath} as a morphism of degree -1, then all this information fits into one diagram of the form \begin{displaymath} \itexarray{ \cdots &\stackrel{}{\longrightarrow}& \pi_\bullet(X_3) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow}& \pi_\bullet(X_2) &\stackrel{\pi_\bullet(f_2)}{\longrightarrow} & \pi_\bullet(X_1) &\stackrel{\pi_\bullet(f_1)}{\longrightarrow}& \pi_\bullet(X_0) \\ && \downarrow &{}_{\mathllap{\delta_2}}\nwarrow & \downarrow &{}_{\mathllap{\delta_1}}\nwarrow & \downarrow &{}_{\mathllap{\delta_0}}\nwarrow & \downarrow \\ && \pi_\bullet(A_3) && \pi_\bullet(A_2) && \pi_\bullet(A_1) && \pi_\bullet(A_0) } \,, \end{displaymath} where each triangle is a rolled-up incarnation of a [[long exact sequence of homotopy groups]] (and in particular is \emph{not} a commuting diagram!). If we furthermore consider the [[bigraded object|bigraded]] [[abelian groups]] $\pi_\bullet(X_\bullet)$ and $\pi_\bullet(A_\bullet)$, then this information may further be rolled-up to a single diagram of the form \begin{displaymath} \itexarray{ \pi_\bullet(X_\bullet) & \stackrel{\pi_\bullet(f_\bullet)}{\longrightarrow} & \pi_\bullet(X_\bullet) \\ & {}_{\mathllap{\delta}}\nwarrow & \downarrow^{\mathrlap{\pi_\bullet(cofib(f_\bullet))}} \\ && \pi_\bullet(A_\bullet) } \end{displaymath} where the morphisms $\pi_\bullet(f_\bullet)$, $\pi_\bullet(cofib(f_\bullet))$ and $\delta$ have bi-degree $(0,-1)$, $(0,0)$ and $(-1,1)$, respectively. Here it is convenient to shift the bigrading, equivalently, by setting \begin{displaymath} \mathcal{D}^{s,t} \coloneqq \pi_{t-s}(X_s) \end{displaymath} \begin{displaymath} \mathcal{E}^{s,t} \coloneqq \pi_{t-s}(A_s) \,, \end{displaymath} because then $t$ counts the cycles of going around the triangles: \begin{displaymath} \cdots \to \mathcal{D}^{s+1,t+1} \stackrel{\pi_{t-s}(f_s)}{\longrightarrow} \mathcal{D}^{s,t} \stackrel{\pi_{t-s}(cofib(f_s))}{\longrightarrow} \mathcal{E}^{s,t} \stackrel{\delta_s}{\longrightarrow} \mathcal{D}^{s+1,t} \to \cdots \end{displaymath} Data of this form is called an \emph{[[exact couple]]}, def. \ref{ExactCouple} below. \end{remark} \begin{defn} \label{UnrolledExactCouple}\hypertarget{UnrolledExactCouple}{} An \emph{unrolled [[exact couple]]} (of Adams-type) is a diagram of [[abelian groups]] of the form \begin{displaymath} \itexarray{ \cdots &\stackrel{}{\longrightarrow}& \mathcal{D}^{3,\bullet} &\stackrel{i_2}{\longrightarrow}& \mathcal{D}^{2,\bullet} &\stackrel{i_1}{\longrightarrow} & \mathcal{D}^{1,\bullet} &\stackrel{i_0}{\longrightarrow}& \mathcal{D}^{0,\bullet} \\ && \downarrow^{\mathrlap{}} &{}_{\mathllap{k_2}}\nwarrow & {}^{\mathllap{j_2}}\downarrow &{}_{\mathllap{k_1}}\nwarrow & {}^{\mathllap{j_1}}\downarrow &{}_{\mathllap{k_0}}\nwarrow & {}_{\mathllap{j_0}}\downarrow \\ && \mathcal{E}^{3,\bullet} && \mathcal{E}^{2,\bullet} && \mathcal{E}^{1,\bullet} && \mathcal{E}^{0,\bullet} } \end{displaymath} such that each triangle is a rolled-up [[long exact sequence]] of [[abelian groups]] of the form \begin{displaymath} \cdots \to \mathcal{D}^{s+1,t+1} \stackrel{i_s}{\longrightarrow} \mathcal{D}^{s,t} \stackrel{j_s}{\longrightarrow} \mathcal{E}^{s,t} \stackrel{k_s}{\longrightarrow} \mathcal{D}^{s+1,t} \to \cdots \,. \end{displaymath} \end{defn} The collection of this ``un-rolled'' data into a single diagram of [[abelian groups]] is called the corresponding \emph{[[exact couple]]}. \begin{defn} \label{ExactCouple}\hypertarget{ExactCouple}{} An \emph{[[exact couple]]} is a [[diagram]] (non-commuting) of [[abelian groups]] of the form \begin{displaymath} \itexarray{ \mathcal{D} &\stackrel{i}{\longrightarrow}& \mathcal{D} \\ & {}_{\mathllap{k}}\nwarrow & \downarrow^{\mathrlap{j}} \\ && \mathcal{E} } \,, \end{displaymath} such that this is [[exact sequence]] exact in each position, hence such that the [[kernel]] of every [[morphism]] is the [[image]] of the preceding one. \end{defn} The concept of exact couple so far just collects the sequences of long exact sequences given by a filtration. Next we turn to extracting information from this sequence of sequences. \begin{remark} \label{Observingd1}\hypertarget{Observingd1}{} The sequence of long exact sequences in remark \ref{UnrolledExactCoupleOfAFiltrationOnASpectrum} is inter-locking, in that every $\pi_{t-s}(X_s)$ appears \emph{twice}: \begin{displaymath} \itexarray{ && & \searrow && \nearrow \\ && && \pi_{t-s-1}(X_{s+1}) \\ && & {}^{\mathllap{\delta_{t-s}^s}}\nearrow && \searrow^{\mathrlap{\pi_{t-s-1}(cofib(f_{s+1}))}} && && && \nearrow \\ && \pi_{t-s}(A_s) && \underset{def: \;\;d_1^{s,t}}{\longrightarrow} && \pi_{t-s-1}(A_{s+1}) && \stackrel{def: \; d_1^{s+1,t}}{\longrightarrow} && \pi_{t-s-2}(A_{s+2}) \\ & \nearrow && && && {}_{\mathllap{\delta_{t-s-1}^{s+1}}}\searrow && \nearrow_{\mathrlap{\pi_{t-s-2}(cofib(f_{s+2}))}} \\ && && && && \pi_{t-s-2}(X_{s+2}) \\ && && && & \nearrow && \searrow } \end{displaymath} This gives rise to the horizontal composites $d_1^{s,t}$, as show above, and by the fact that the diagonal sequences are long exact, these are differentials: $d_1^2 = 0$, hence give a [[chain complex]]: \begin{displaymath} \itexarray{ \cdots & \stackrel{}{\longrightarrow} && \pi_{t-s}(A_s) && \overset{d_1^{s,t}}{\longrightarrow} && \pi_{t-s-1}(A_{s+1}) && \stackrel{d_1^{s+1,t}}{\longrightarrow} && \pi_{t-s-2}(A_{s+2}) &&\longrightarrow & \cdots } \,. \end{displaymath} We read off from the interlocking long exact sequences what these differentials \emph{mean}: an element $c \in \pi_{t-s}(A_s)$ lifts to an element $\hat c \in \pi_{t-s-1}(X_{s+2})$ precisely if $d_1 c = 0$: \begin{displaymath} \itexarray{ &\hat c \in & \pi_{t-s-1}(X_{s+2}) \\ && & \searrow^{\mathrlap{\pi_{t-s-1}(f_{s+1})}} \\ && && \pi_{t-s-1}(X_{s+1}) \\ && & {}^{\mathllap{\delta_{t-s}^s}}\nearrow && \searrow^{\mathrlap{\pi_{t-s-1}(cofib(f_{s+1}))}} \\ & c \in & \pi_{t-s}(A_s) && \underset{d_1^{s,t}}{\longrightarrow} && \pi_{t-s-1}(A_{s+1}) } \end{displaymath} This means that the [[cochain cohomology]] of the complex $(\pi_{\bullet}(A_\bullet), d_1)$ produces elements of $\pi_\bullet(X_\bullet)$ and hence of $\pi_\bullet(X)$. In order to organize this observation, notice that in terms of the exact couple of remark \ref{UnrolledExactCoupleOfAFiltrationOnASpectrum}, the differential \begin{displaymath} d_1^{s,t} \;\coloneqq \; \pi_{t-s-1}(cofib(f_{s+1})) \circ \delta_{t-s}^s \end{displaymath} is a component of the composite \begin{displaymath} d \coloneqq j \circ k \,. \end{displaymath} \end{remark} Some terminology: \begin{defn} \label{PageOfAnExactCouple}\hypertarget{PageOfAnExactCouple}{} Given an exact couple, def. \ref{ExactCouple}, \begin{displaymath} \itexarray{ \mathcal{D}^{\bullet,\bullet} &\stackrel{i}{\longrightarrow}& \mathcal{D}^{\bullet,\bullet} \\ & {}_{\mathllap{k}}\nwarrow & \downarrow^{\mathrlap{j}} \\ && \mathcal{E}^{\bullet,\bullet} } \end{displaymath} its \emph{page} is the [[chain complex]] \begin{displaymath} (E^{\bullet,\bullet}, d \coloneqq j \circ k) \,. \end{displaymath} \end{defn} \begin{defn} \label{DerivedExactCouple}\hypertarget{DerivedExactCouple}{} Given an exact couple, def. \ref{ExactCouple}, then the induced \emph{derived exact couple} is the diagram \begin{displaymath} \itexarray{ \widetilde {\mathcal{D}} &\stackrel{\tilde i}{\longrightarrow}& \widetilde {\mathcal{D}} \\ & {}_{\mathllap{\tilde k}}\nwarrow & \downarrow^{\mathrlap{\tilde j}} \\ && \widetilde{\mathcal{E}} } \end{displaymath} with \begin{enumerate}% \item $\tilde{\mathcal{E}} \coloneqq ker(d)/im(d)$; \item $\tilde {\mathcal{D}} \coloneqq im(i)$; \item $\tilde i \coloneqq i|_{im(i)}$; \item $\tilde j \coloneqq j \circ (im(i))^{-1}$; \item $\tilde k \coloneqq k|_{ker(d)}$. \end{enumerate} \end{defn} \begin{prop} \label{DerivedExactCoupleIsExactCouple}\hypertarget{DerivedExactCoupleIsExactCouple}{} A derived exact couple, def. \ref{DerivedExactCouple}, is again an exact couple, def. \ref{ExactCouple}. \end{prop} \begin{defn} \label{}\hypertarget{}{} Given an exact couple, def. \ref{ExactCouple}, then the induced [[spectral sequence]], def. \ref{SpectralSequence}, is the sequence of pages, def. \ref{PageOfAnExactCouple}, of the induced sequence of derived exact couples, def. \ref{DerivedExactCouple}, prop. \ref{DerivedExactCoupleIsExactCouple}. \end{defn} \begin{example} \label{AdamsTypeSpectralSequenceOfATower}\hypertarget{AdamsTypeSpectralSequenceOfATower}{} Consider a [[filtered spectrum]], def. \ref{FilteredSpectrum}, \begin{displaymath} \itexarray{ \cdots &\stackrel{}{\longrightarrow}& X_3 &\stackrel{f_2}{\longrightarrow}& X_2 &\stackrel{f_2}{\longrightarrow} & X_1 &\stackrel{f_1}{\longrightarrow}& X \\ && \downarrow && \downarrow && \downarrow && \downarrow \\ && A_3 && A_2 && A_1 && A_0 } \end{displaymath} and its induced [[exact couple]] of [[stable homotopy groups]], from remark \ref{UnrolledExactCoupleOfAFiltrationOnASpectrum} \begin{displaymath} \itexarray{ \mathcal{D} &\stackrel{i}{\longrightarrow}& \mathcal{D} \\ &{}_{\mathllap{k}}\nwarrow& \downarrow^{\mathrlap{j}} \\ && \mathcal{E} } \;\;\;\;\;\,\;\;\;\;\;\; \itexarray{ \mathcal{D} &\stackrel{(-1,-1)}{\longrightarrow}& \mathcal{D} \\ &{}_{\mathllap{(1,0)}}\nwarrow& \downarrow^{\mathrlap{(0,0)}} \\ && \mathcal{E} } \end{displaymath} with bigrading as shown on the right. As we pass to derived exact couples, by def. \ref{DerivedExactCouple}, the bidegree of $i$ and $k$ is preserved, but that of $j$ increases by $(1,1)$ in each step, since \begin{displaymath} deg(\tilde j) = deg( j \circ im(i)^{-1}) = deg(j) + (1,1) \,. \end{displaymath} Therefore the induced [[spectral sequence]] has differentials of the form \begin{displaymath} d_r \;\colon\; \mathcal{E}_r^{s,t} \longrightarrow \mathcal{E}_r^{s+r, t+r-1} \,. \end{displaymath} \end{example} \hypertarget{references}{}\subsection*{{References}}\label{references} The original article is \begin{itemize}% \item [[W. S. Massey]], \emph{Exact Couples in Algebraic Topology (Parts I and II)}, Annals of Mathematics, Second Series, Vol. 56, No. 2 (Sep., 1952), pp. 363-396 (\href{http://www.maths.ed.ac.uk/~aar/papers/massey6.pdf}{pdf}) \end{itemize} also \begin{itemize}% \item [[Beno Eckmann]], [[Peter Hilton]], \emph{Exact couples in an abelian category}, Journal of Algebra Volume 3, Issue 1, January 1966, Pages 38-87 (\href{http://www.sciencedirect.com/science/article/pii/0021869366900196}{jorunal}) \end{itemize} A class of examples leading to what later came to be known as the [[Atiyah-Hirzebruch spectral sequence]] is discussed in section XV.7 of \begin{itemize}% \item [[Henri Cartan]], [[Samuel Eilenberg]], \emph{Homological algebra}, Princeton Univ. Press (1956) \end{itemize} Textbook accounts include \begin{itemize}% \item [[Frank Adams]], part III, section 7 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochmann]], section 2.2 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[John McCleary]], section 2.2 (from p. 37 on) in \emph{\href{https://pages.vassar.edu/mccleary/books/users-guide-to-spectral-sequences/}{A user's guide to spectral sequences}}, Cambridge University Press, 2001 \item [[Charles Weibel]], section 5.9 \emph{[[An Introduction to Homological Algebra]]} \end{itemize} Another review with an eye towards application to the [[Adams spectral sequence]] is in \begin{itemize}% \item [[Doug Ravenel]], chapter 2, section 1 of \emph{[[Complex cobordism and stable homotopy groups of spheres]]} \end{itemize} [[!redirects exact couples]] [[!redirects spectral sequence of an exact couple]] [[!redirects spectral sequences of exact couples]] \end{document}