\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exact sequence} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{definition_in_additive_categories}{Definition in additive categories}\dotfill \pageref*{definition_in_additive_categories} \linebreak \noindent\hyperlink{definition_in_pointed_sets}{Definition in pointed sets}\dotfill \pageref*{definition_in_pointed_sets} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{computing_terms_in_an_exact_sequence}{Computing terms in an exact sequence}\dotfill \pageref*{computing_terms_in_an_exact_sequence} \linebreak \noindent\hyperlink{ExactnessAndQuasiIsomorphisms}{Exactness and quasi-isomorphisms}\dotfill \pageref*{ExactnessAndQuasiIsomorphisms} \linebreak \noindent\hyperlink{SESAndQuotients}{Short exact sequences and quotients}\dotfill \pageref*{SESAndQuotients} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SpecificExamples}{Specific examples}\dotfill \pageref*{SpecificExamples} \linebreak \noindent\hyperlink{classes_of_examples}{Classes of examples}\dotfill \pageref*{classes_of_examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{exact sequence} may be defined in a [[semi-abelian category]], and more generally in a [[homological category]]. It is a [[sequential diagram]] in which the [[image]] of each [[morphism]] is equal to the [[kernel]] of the next morphism. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{definition_in_additive_categories}{}\subsubsection*{{Definition in additive categories}}\label{definition_in_additive_categories} Let $\mathcal{A}$ be an [[additive category]] (often assumed to be an [[abelian category]], for instance $\mathcal{A} = R$[[Mod]] for $R$ some [[ring]]). \begin{defn} \label{ExactSequence}\hypertarget{ExactSequence}{} An \textbf{exact sequence} in $\mathcal{A}$ is a [[chain complex]] $C_\bullet$ in $\mathcal{A}$ with vanishing [[chain homology]] in each degree: \begin{displaymath} \forall n \in \mathbb{N} . H_n(C) = 0 \,. \end{displaymath} \end{defn} \begin{defn} \label{ShortExactSequence}\hypertarget{ShortExactSequence}{} A \textbf{short exact sequence} is an exact sequence, def. \ref{ExactSequence} of the form \begin{displaymath} \cdots \to 0 \to 0 \to A \to B \to C \to 0 \to 0 \to \cdots \,. \end{displaymath} One usually writes this just ``$0 \to A \to B \to C \to 0$'' or even just ``$A \to B \to C$''. \end{defn} \begin{remark} \label{}\hypertarget{}{} A general exact sequence is sometimes called a \textbf{long exact sequence}, to distinguish from the special case of a short exact sequence. \end{remark} \begin{prop} \label{CharacterizationByMonoEpi}\hypertarget{CharacterizationByMonoEpi}{} Explicitly, a sequence of morphisms \begin{displaymath} 0 \to A \stackrel{i}\to B \stackrel{p}\to C \to 0 \end{displaymath} is short exact, def. \ref{ShortExactSequence}, precisely if \begin{enumerate}% \item $i$ is a [[monomorphism]], \item $p$ is an [[epimorphism]], \item and the [[image]] of $i$ equals the [[kernel]] of $p$ (equivalently, the [[coimage]] of $p$ equals the [[cokernel]] of $i$). \end{enumerate} \end{prop} \begin{proof} The third condition is the definition of exactness at $B$. So we need to show that the first two conditions are equivalent to exactness at $A$ and at $C$. This is easy to see by looking at elements when $\mathcal{A} \simeq R$[[Mod]], for some ring $R$ (and the general case can be reduced to this one using one of the \href{abelian%20category#EmbeddingTheorems}{embedding theorems}): The sequence being exact at \begin{displaymath} 0 \to A \to B \end{displaymath} means, since the [[image]] of $0 \to A$ is just the element $0 \in A$, that the [[kernel]] of $A \to B$ consists of just this element. But since $A \to B$ is a [[group homomorphism]], this means equivalently that $A \to B$ is an [[injection]]. Dually, the sequence being exact at \begin{displaymath} B \to C \to 0 \end{displaymath} means, since the [[kernel]] of $C \to 0$ is all of $C$, that also the [[image]] of $B \to C$ is all of $C$, hence equivalently that $B \to C$ is a [[surjection]]. \end{proof} \begin{defn} \label{}\hypertarget{}{} A \textbf{[[split exact sequence]]} is a short exact sequence as above in which $i$ is a [[split monomorphism]], or (equivalently) in which $p$ is a [[split epimorphism]]. \end{defn} In this case, $B$ may be decomposed as the [[biproduct]] $A \oplus C$ (with $i$ and $p$ the usual biproduct inclusion and projection); this sense in which $B$ is `split' into $A$ and $C$ is the origin of the general terms `split (mono/epi)morphism'. \hypertarget{definition_in_pointed_sets}{}\subsubsection*{{Definition in pointed sets}}\label{definition_in_pointed_sets} It is also helpful to consider a similar notion in the case of a [[pointed set]]. \begin{defn} \label{}\hypertarget{}{} In the category $Set_*$ of [[pointed sets]], a sequence \begin{displaymath} \itexarray{ (A, a) & \overset{f}{\to} & (B, b) & \overset{g}{\to} & (C, c) } \end{displaymath} is said to be \textbf{exact} at $(B, b)$ if $im f = g^{-1}(c)$. For [[concrete category|concrete]] pointed categories (ie. a category $\mathcal{C}$ with a faithful functor $F: \mathcal{C} \to Set_*$), a sequence is exact if the image under $F$ is exact. \end{defn} In the case of (abelian) categories like $Ab$ and $R-Mod$, the two notions of exactness coincide if we pick the point of each group/module to be $0$. Such a general notion is useful in cases such as the [[long exact sequence of homotopy groups]] where the homotopy ``groups'' for small $n$ are just pointed sets without a group structure. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{computing_terms_in_an_exact_sequence}{}\subsubsection*{{Computing terms in an exact sequence}}\label{computing_terms_in_an_exact_sequence} A typical use of a long exact sequence, notably of the [[homology long exact sequence]], is that it allows to determine some of its entries in terms of others. The characterization of short exact sequences in prop. \ref{CharacterizationByMonoEpi} is one example for this: whenever in a long exact sequence one entry vanishes as in $\cdot \to 0 \to C_n \to \cdot$ or $\cdot \to C_n \to 0 \to \cdots$, it follows that the \emph{next} morphism out of or into the vanishing entry is a [[monomorphism]] or [[epimorphism]], respectively. In particular: \begin{prop} \label{}\hypertarget{}{} If part of an exact sequence looks like \begin{displaymath} \cdots \to 0 \to C_{n+1} \stackrel{\partial_n}{\to} C_n \to 0 \to \cdots \,, \end{displaymath} then $\partial_n$ is an [[isomorphism]] and hence \begin{displaymath} C_{n+1} \simeq C_n \,. \end{displaymath} \end{prop} \hypertarget{ExactnessAndQuasiIsomorphisms}{}\subsubsection*{{Exactness and quasi-isomorphisms}}\label{ExactnessAndQuasiIsomorphisms} \begin{prop} \label{}\hypertarget{}{} A chain complex $C_\bullet$ is exact (is a long exact sequence), precisely if the unique [[chain map]] from the [[initial object]], the 0-complex \begin{displaymath} 0 \to C_\bullet \end{displaymath} is a [[quasi-isomorphism]]. \end{prop} \hypertarget{SESAndQuotients}{}\subsubsection*{{Short exact sequences and quotients}}\label{SESAndQuotients} The following are some basic lemmas that show how given a short exact sequence one obtains new short exact sequences from forming [[quotients]]/[[cokernels]] (see \hyperlink{Wise}{Wise}). Let $\mathcal{A}$ be an [[abelian category]]. \begin{lemma} \label{}\hypertarget{}{} For \begin{displaymath} A \to B \to C \to 0 \end{displaymath} an exact sequence in $\mathcal{A}$ and for $X \to B$ any morphism in $\mathcal{A}$, also \begin{displaymath} A \to B/X \to C/X \to 0 \end{displaymath} is a short exact sequence. \end{lemma} \begin{proof} We have an exact sequence of complexes of length 2 \begin{displaymath} \itexarray{ 0 &\to& X &\stackrel{id}{\to}& X &\to& 0 \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ A &\to& B &\to& C &\to& 0 } \end{displaymath} and the exact sequence to be demonstrated is degreewise the [[cokernel]] of this sequence. So the statement reduces to the fact that forming cokernels is a [[right exact functor]]. \end{proof} \begin{lemma} \label{}\hypertarget{}{} For \begin{displaymath} 0 \to A \to B \to C \end{displaymath} an exact sequence and $X \to A$ any morphism, also \begin{displaymath} 0 \to A/X \to B/X \to C \end{displaymath} is exact. \end{lemma} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{SpecificExamples}{}\subsubsection*{{Specific examples}}\label{SpecificExamples} \begin{example} \label{MultiplicationAndCyclicGroup}\hypertarget{MultiplicationAndCyclicGroup}{} Let $\mathcal{A} = \mathbb{Z}$[[Mod]] $\simeq$ [[Ab]]. For $n \in \mathbb{N}$ with $n \geq 1$ let $\mathbb{Z} \stackrel{\cdot n}{\to} \mathbb{Z}$ be the [[linear map]]/[[homomorphism]] of [[abelian groups]] which acts by the ordinary multiplication of [[integers]] by $n$. This is clearly an [[injection]]. The [[cokernel]] of this morphism is the projection to the [[quotient group]], which is the [[cyclic group]] $\mathbb{Z}_n \coloneqq \mathbb{Z}/n\mathbb{Z}$. Hence we have a short exact sequence \begin{displaymath} 0 \to \mathbb{Z} \stackrel{\cdot n}{\to} \mathbb{Z} \to \mathbb{Z}_n \,. \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} The [[connecting homomorphism]] of the [[long exact sequence in homology]] induced from short exact sequences of the form in example \ref{MultiplicationAndCyclicGroup} is called a \emph{[[Bockstein homomorphism]]}. \end{remark} \begin{example} \label{}\hypertarget{}{} \begin{itemize}% \item [[exponential exact sequence]] \item [[Kummer sequence]] \item [[Artin-Schreier sequence]] \item [[Kummer-Artin-Schreier-Witt exact sequence]] \end{itemize} \end{example} \hypertarget{classes_of_examples}{}\subsubsection*{{Classes of examples}}\label{classes_of_examples} \begin{itemize}% \item [[long exact sequence of homotopy groups]] \item [[long exact sequence in cohomology]] \item [[long exact sequence in homology]] \item [[Serre long exact sequence]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[splicing of short exact sequences]] \item [[exact functor]] \item [[exact sequence of Hopf algebras]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A standard introduction is for instance in section 1.1 of \begin{itemize}% \item [[Charles Weibel]], \emph{[[An Introduction to Homological Algebra]]} \end{itemize} The quotient lemmas from \hyperlink{SESAndQuotients}{above} are discussed in \begin{itemize}% \item [[Jonathan Wise]], \emph{The Snake Lemma} (\href{http://math.stanford.edu/~jonathan/papers/snake.pdf}{pdf}) \end{itemize} in the context of the [[salamander lemma]] and the [[snake lemma]]. [[!redirects exact sequences]] [[!redirects long exact sequence]] [[!redirects short exact sequence]] [[!redirects long exact sequences]] [[!redirects short exact sequences]] \end{document}