\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{excellent model category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_category_theory}{}\paragraph*{{Model category theory}}\label{model_category_theory} [[!include model category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InvertibilityHypothesis}{The invertibility hypothesis}\dotfill \pageref*{InvertibilityHypothesis} \linebreak \noindent\hyperlink{description_of_the_invertibility_hypothesis}{Description of the invertibility hypothesis}\dotfill \pageref*{description_of_the_invertibility_hypothesis} \linebreak \noindent\hyperlink{simplicial_sets_satisfy_the_invertibility_hypothesis}{Simplicial sets satisfy the invertibility hypothesis}\dotfill \pageref*{simplicial_sets_satisfy_the_invertibility_hypothesis} \linebreak \noindent\hyperlink{all_excellent_model_categories_satisfy_the_invertibility_hypothesis}{All excellent model categories satisfy the invertibility hypothesis}\dotfill \pageref*{all_excellent_model_categories_satisfy_the_invertibility_hypothesis} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[monoidal model category]] $\mathbf{S}$ with extra properties guaranteeing a particularly good [[homotopy theory]] of $\mathbf{S}$-[[enriched categories]] is referred to in (\hyperlink{Lurie}{Lurie}) as an \emph{excellent model category}. (The term \emph{excellent model category} has also been used by \hyperlink{LumsdaineShulman}{Lumsdaine and Shulman} for a slightly different notion; see [[type-theoretic model category]]. This article is about Lurie’s sense.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $\mathbf{S}$ be a symmetric [[monoidal model category]]. It is called \textbf{excellent} if \begin{itemize}% \item it is a [[combinatorial model category]]; \item the class of [[weak equivalences]] is stable under [[filtered colimits]]; \item every monomorphism is a cofibration (hence in particular all objects are [[cofibrant]]); \item the class of cofibrations is closed under [[products]]; \end{itemize} \end{defn} This is (\hyperlink{Lurie}{Lurie, def. A.3.2.16}), except that he also includes the ``invertibility hypothesis'' (\hyperlink{InvertibilityHypothesis}{see below}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[classical model structure on simplicial sets]]. \item Any symmetric monoidal, locally presentable category with its [[trivial model structure]]. \item The Cartesian model structure on [[marked simplicial sets]], with the cartesian product. \item The [[model structure for quasi-categories]] on simplicial sets. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item One of Lurie's important original theorems was that if $\mathbf{S}$ is an excellent model category, $\mathbf{A}$ is a [[combinatorial model category|combinatorial]] $\mathbf{S}$-[[enriched model category]], and $C$ is a small $\mathbf{S}$-[[enriched category]], then the category $[C,\mathbf{A}]$ of enriched functors has both a [[projective model structure]] and an [[injective model structure]], which are both combinatorial. However, it has since been shown by \hyperlink{MR13}{MR13, Remark 3.8} that excellence is unnecessary for this result. \end{itemize} \hypertarget{InvertibilityHypothesis}{}\subsection*{{The invertibility hypothesis}}\label{InvertibilityHypothesis} \hyperlink{Lurie}{Lurie} originally included the an additional condition in the definition, called the \textbf{invertibility hypothesis}. Fortunately, it was shown later by \hyperlink{Lawson}{Lawson} that the invertibility hypothesis is redundant: any model category satisfying the other axioms of an excellent model category always satisfies the invertibility hypothesis. \hypertarget{description_of_the_invertibility_hypothesis}{}\subsubsection*{{Description of the invertibility hypothesis}}\label{description_of_the_invertibility_hypothesis} The invertibility hypothesis states: \begin{itemize}% \item for any homotopy equivalence $f$ in an $\mathbf{S}$-[[enriched category]] $C$, the localization functor $C \to C[f^{-1}]$ is a weak equivalence of $\mathbf{S}$-enriched categories. \end{itemize} The invertibility hypothesis requires some more explanation. Firstly, by a ``homotopy equivalence'' we mean a morphism that becomes an isomorphism in the homotopy category $h C$, which is defined by applying to the hom-objects of $C$ the monoidal localization functor $\mathbf{S}\to h \mathbf{S}$ from $\mathbf{S}$ to its [[homotopy category]] (defined in the usual way for a model category by inverting its weak equivalences). This makes $h C$ an $h \mathbf{S}$-enriched category, and we ask that $f$ be invertible in the underlying ordinary category of $h C$. Secondly, by $C[f^{-1}]$ we mean a \emph{homotopy invariant} notion of ``localization''. One way to define this is to assume that $f$ is classified by a functor $[f]:\mathbf{2}_{\mathbf{S}} \to C$ that is a [[cofibration]] in the [[model structure on enriched categories]], where $\mathbf{2}_{\mathbf{S}}$ denotes the $\mathbf{S}$-enriched [[interval category]], and take the ordinary localization which can be defined as a pushout \begin{displaymath} \itexarray{ \mathbf{2}_{\mathbf{S}} & \xrightarrow{[f]} & C \\ \downarrow && \downarrow \\ \mathbf{2}^\cong_{\mathbf{S}} & \to & C\langle f^{-1}\rangle.} \end{displaymath} Here $\mathbf{2}^\cong_{\mathbf{S}}$ denotes the 2-object contractible groupoid regarded as an $\mathbf{S}$-category. Another way to define it (without this assumption on $f$) is to factor the functor $\mathbf{2}_{\mathbf{S}}\to \mathbf{2}^\cong_{\mathbf{S}}$ through a cofibration $\mathbf{2}_{\mathbf{S}}\to E$ and weak equivalence $E\to \mathbf{2}^\cong_{\mathbf{S}}$ in the [[model structure on enriched categories]], and take the ordinary pushout \begin{displaymath} \itexarray{ \mathbf{2}_{\mathbf{S}} & \xrightarrow{[f]} & C \\ \downarrow && \downarrow \\ E & \to & C[f^{-1}].} \end{displaymath} Finally, by a ``weak equivalence of $\mathbf{S}$-enriched categories'' we mean a weak equivalence in the [[model structure on enriched categories]]. \hypertarget{simplicial_sets_satisfy_the_invertibility_hypothesis}{}\subsubsection*{{Simplicial sets satisfy the invertibility hypothesis}}\label{simplicial_sets_satisfy_the_invertibility_hypothesis} We \hyperlink{Lurie}{Lurie} says (A.3.2.18) that this is ``one of the main theorems'' of \hyperlink{DwyerKanLocalizations}{DK80}, but some further details may be helpful to understand how this comes about. Note that this proof is not subsumed by Lawson's proof that all excellent model categories satisfy the invertibility hypothesis; instead Lawson \emph{uses} this theorem to transfer the property from simplicial sets to all others excellent model categories. The relevant theorem appears to be Proposition 10.4 of \hyperlink{DwyerKanLocalizations}{DK80} which states \begin{quote}% Let $V\to B\in \mathrm{s} O-Cat$ be a strong cofibration. Then the induced map $B\to B[V^{-1}]$ is a weak equivalence if and only if every map of $\pi_0 B$ which is in the image of $\pi_0 V$ is invertible. \end{quote} Here $\mathrm{s} O-Cat$ is the category of simplicially enriched categories with a fixed object set $O$. Thus this proposition does not apply as written to the map $[f] : \mathbf{2}_{\mathbf{S}}\to C$ from the invertibility hypothesis, since it is not a bijection on objects. Instead we have to replace $\mathbf{2}_{\mathbf{S}}$ by a simplicially enriched category $\mathbf{2}_{\mathbf{S},O}$ with set of objects $O = ob(C)$ in which the only nonidentity morphism ``is'' $f$. Note that $[f]$ being a cofibration implies that it is injective on objects, so that $f$ has distinct domain and codomain; thus in $\mathbf{2}_{\mathbf{S},O}$ the unique nonidentity morphism is not an endomorphism and hence we don't have to worry about any nontrivial composites. Now the construction of $B[V^{-1}]$ in \hyperlink{DwyerKanLocalizations}{DK80} is essentially the same as the pushout quoted above from \hyperlink{Lurie}{Lurie}. And $\pi_0 B$ denotes taking the homwise set of connected components of a simplicially enriched category, which can be factored as first taking the enriched homotopy category (which is a category enriched over $h(sSet)$) and then its underlying ordinary category; thus the assumption that ``every map of $\pi_0 B$ which is in the image of $\pi_0 V$ is invertible'' is equivalent to the assumption that $f$ is a homotopy equivalence. Finally, a ``strong cofibration'' is defined in \hyperlink{DwyerKanLocalizations}{DK80} to be a cofibration with cofibrant domain, and $\mathbf{2}_{\mathbf{S},O}$ is easily checked to indeed be cofibrant (essentially because the unit object of $sSet$ is cofibrant). \hypertarget{all_excellent_model_categories_satisfy_the_invertibility_hypothesis}{}\subsubsection*{{All excellent model categories satisfy the invertibility hypothesis}}\label{all_excellent_model_categories_satisfy_the_invertibility_hypothesis} \hyperlink{Lawson}{Lawson} now shows that: \begin{enumerate}% \item Cubical sets are monoidally Quillen equivalent to simplicial sets, hence also satisfy the invertibility hypothesis. \item Any excellent model category admits a monoidal Quillen functor from cubical sets, hence also satisfies the invertibility hypothesis. \end{enumerate} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]}, Section A.3 \item [[William Dwyer]], [[Daniel Kan]], \emph{Simplicial localizations of categories} , J. Pure Appl. Algebra 17 (1980), 267--284. (\href{http://www.nd.edu/~wgd/Dvi/SimplicialLocalizations.pdf}{pdf}) \item [[Tyler Lawson]], \emph{Localization of enriched categories and cubical sets}, \href{https://arxiv.org/abs/1602.05313}{arXiv:1602.05313} \item [[M. Makkai]], [[J. Rosický]], \emph{Cellular categories}, 2013, \href{https://arxiv.org/abs/1304.7572}{arXiv:1304.7572} \item [[Peter LeFanu Lumsdaine]], [[Mike Shulman]], \emph{Semantics of [[higher inductive types|Higher Inductive Types]], 2017, \href{https://arxiv.org/abs/1705.07088}{arXiv:1705.07088}} \end{itemize} [[!redirects excellent model categories]] \end{document}