\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exceptional generalized geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{exceptional_structures}{}\paragraph*{{Exceptional structures}}\label{exceptional_structures} [[!include exceptional structures -- contents]] \hypertarget{duality_in_string_theory}{}\paragraph*{{Duality in string theory}}\label{duality_in_string_theory} [[!include duality in string theory -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{HigherSupersymmetry}{Higher supersymmetry}\dotfill \pageref*{HigherSupersymmetry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{SuperExceptionalGeometryReferences}{Super-exceptional generalized geometry}\dotfill \pageref*{SuperExceptionalGeometryReferences} \linebreak \noindent\hyperlink{__}{$E_6$, $E_7$, $E_8$}\dotfill \pageref*{__} \linebreak \noindent\hyperlink{}{$E_{10}$}\dotfill \pageref*{} \linebreak \noindent\hyperlink{_2}{$E_{11}$}\dotfill \pageref*{_2} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A variant of the idea of [[generalized complex geometry]] given by passing from generalization of [[complex geometry]] to generalization of [[exceptional geometry]]. Instead of by [[reduction of structure groups]] along inclusions like $O(d)\times O(d) \to O(d,d)$ it is controled by inclusions into [[split real forms]] of [[exceptional Lie groups]]. This serves to neatly encode [[U-duality]] groups in [[supergravity]] as well as higher [[supersymmetry]] of supergravity [[Kaluza-Klein mechanism|compactifications]]. See also at \emph{[[exceptional field theory]]} for more on this. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{HigherSupersymmetry}{}\subsubsection*{{Higher supersymmetry}}\label{HigherSupersymmetry} Compactification of [[11-dimensional supergravity]] on a [[manifold]] of [[dimension]] 7 preserves $N = 1$ [[supersymmetry]] precisely if its [[generalized tangent bundle]] has [[G-structure]] for the inclusion \begin{displaymath} SU(7) \hookrightarrow E_{7(7)} \end{displaymath} of the [[special unitary group]] in dimension 7 into the [[split real form]] of [[E7]]. This is shown in (\hyperlink{PachecoWaldram08}{Pacheco-Waldram 08}). One dimension down, compactification of 10-dimensional [[type II supergravity]] on a 6-manifold $X$ preserves $N = 2$ supersymmetry precisely if the [[generalized tangent bundle]] $T X \otimes T^* X$ in the NS-NS sector admits [[G-structure]] for the inclusion \begin{displaymath} SU(3) \times SU(3) \hookrightarrow O(6,6) \,. \end{displaymath} This is reviewed in (\hyperlink{GLSW}{GLSW, section 2}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[non-geometric string theory vacua]] \item [[generalized complex geometry]], [[exceptional geometry]] \item [[generalized tangent bundle]], [[exceptional tangent bundle]] \item [[generalized Calabi-Yau manifold]], [[generalized G2-manifold]] \item [[Bn-geometry]], [[differential T-duality]] \item [[universal exceptionalism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Original articles include \begin{itemize}% \item K. Koepsell, [[Hermann Nicolai]], [[Henning Samtleben]], \emph{An exceptional geometry for d=11 supergravity?}, Class. Quant. Grav.17:3689-3702, 2000 (\href{http://arxiv.org/abs/hep-th/0006034}{arXiv:hep-th/0006034}) \item [[Chris Hull]], \emph{Generalised Geometry for M-Theory}, JHEP 0707:079 (2007) (\href{http://arxiv.org/abs/hep-th/0701203}{arXiv:hep-th/0701203}) \item Paulo Pires Pacheco, [[Daniel Waldram]], \emph{M-theory, exceptional generalised geometry and superpotentials}, JHEP 0809:123, 2008 (\href{http://arxiv.org/abs/0804.1362}{arXiv:0804.1362}) \item [[Mariana Graña]], [[Jan Louis]], Aaron Sim, [[Daniel Waldram]], \emph{$E_{7(7)}$ formulation of $N=2$ backgrounds} (\href{http://arxiv.org/abs/0904.2333}{arXiv:0904.2333}) \item G. Aldazabala, E. Andr\'e{}sb, P. C\'a{}marac, [[Mariana Graña]], \emph{U-dual fluxes and generalized geometry}, JHEP 1011:083,2010 (\href{http://arxiv.org/abs/1007.5509}{arXiv:1007.5509}) \item [[Mariana Graña]], Francesco Orsi, \emph{$N=1$ vacua in Exceptional Generalized Geometry} (\href{http://arxiv.org/abs/1105.4855}{arXiv:1105.4855}) \end{itemize} \begin{itemize}% \item [[Mariana Graña]], Francesco Orsi, \emph{N=2 vacua in Generalized Geometry}, (\href{http://arxiv.org/abs/1207.3004}{arXiv:1207.3004}) \item Andr\'e{} Coimbra, Charles Strickland-Constable, [[Daniel Waldram]], \emph{$E_{d(d)} \times \mathbb{R}^+$ Generalised Geometry, Connections and M theory} (\href{http://arxiv.org/abs/1112.3989}{arXiv:1112.3989}) \item [[David Baraglia]], \emph{Leibniz algebroids, twistings and exceptional generalized geometry}, Journal of Geometry and Physics 62 (2012), pp. 903-934 (\href{http://arxiv.org/abs/1101.0856}{arXiv:1101.0856}) \item [[David Baraglia]], \emph{Exceptional generalized geometry and $N = 2$ backgrounds} (\href{http://mitchell.physics.tamu.edu/Conference/GeneralizedGeometries/Mon-1-Grana.pdf}{pdf}) \end{itemize} Reviews include \begin{itemize}% \item Daniel Persson, \emph{Arithmetic and Hyperbolic Structures in String Theory} (\href{http://arxiv.org/abs/1001.3154}{arXiv:1001.3154}) \item Nassiba Tabti, \emph{Kac-Moody algebraic structures in supergravity theories} (\href{http://arxiv.org/abs/0910.1444}{arXiv:0910.1444}) \end{itemize} Relation to [[Borcherds superalgebras]] is surveyed and discussed in \begin{itemize}% \item Jakob Palmkvist, \emph{Exceptional geometry and Borcherds superalgebras} (\href{http://arxiv.org/abs/1507.08828}{arXiv:1507.08828}) \end{itemize} [[black branes]] in the exotic spacetime are discussed in \begin{itemize}% \item Ilya Bakhmatov, [[David Berman]], [[Axel Kleinschmidt]], Edvard Musaev, Ray Otsuki, \emph{\href{https://arxiv.org/abs/1710.09740}{arXiv:1710.09740}} \end{itemize} The [[string]] and [[membrane]] [[sigma-models]] on exceptional spacetime (the ``exceptional sigma models'') are discussed in \begin{itemize}% \item Yuho Sakatani, Shozo Uehara, \emph{Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry}, Phys. Rev. Lett. 117, 191601 (2016) (\href{https://arxiv.org/abs/1607.04265}{arXiv:1607.04265}) \item [[Alex Arvanitakis]], Chris D. A. Blair, \emph{Type II strings are Exceptional} (\href{https://arxiv.org/abs/1712.07115}{arXiv:1712.07115}) \item [[Alex Arvanitakis]], Chris Blair, \emph{The Exceptional Sigma Model} (\href{https://arxiv.org/abs/1802.00442}{arXiv:1802.00442}) \end{itemize} The generalized-U-duality+diffeomorphism invariance in 11d is discussed in \begin{itemize}% \item [[David Berman]], [[Martin Cederwall]], [[Axel Kleinschmidt]], Daniel C. Thompson, \emph{The gauge structure of generalised diffeomorphisms} (\href{http://arxiv.org/abs/1208.5884}{arXiv:1208.5884}) \end{itemize} For the [[worldvolume]] [[physical theory|theory]] of the [[M5-brane]] this is discussed in \begin{itemize}% \item Machiko Hatsuda, Kiyoshi Kamimura, \emph{M5 algebra and $SO(5,5)$ duality} (\href{http://arxiv.org/abs/1305.2258}{arXiv:1305.2258}) \end{itemize} \hypertarget{SuperExceptionalGeometryReferences}{}\subsubsection*{{Super-exceptional generalized geometry}}\label{SuperExceptionalGeometryReferences} The combination/unification of [[exceptional generalized geometry]] with [[supergeometry]] used to be an open problem: \begin{itemize}% \item [[Martin Cederwall]], p. 39 of \emph{Fundamental issues in extended geometry}, 8th Mathematical Physics Meeting, Aug 2014 Belgrade, Serbia (\href{http://inspirehep.net/record/1477275}{spire:1477275}) \item [[Martin Cederwall]], Joakim Edlund, Anna Karlsson, p. 4, 7 of \emph{Exceptional geometry and tensor fields}, J. High Energ. Phys. (2013) 2013: 28 (\href{https://arxiv.org/abs/1302.6736}{arXiv:1302.6736}) \end{itemize} Plausibility arguments that the bosonic body of the [[superspace]] underlying the [[M-theory Lie algebra]] serves as the unifying exceptional generalized geometry for [[M-theory]] for $n = 11$: \begin{itemize}% \item [[Igor Bandos]], \emph{Exceptional field theories, superparticles in an enlarged 11D superspace and higher spin theories}, Nucl. Phys. B925 (2017) 28-62 (\href{https://arxiv.org/abs/1612.01321}{arXiv:1612.01321}) \end{itemize} Arguments that super-exceptional M-geometry for $n = 11$ is in fact a further fermionic extension of that (to the ``hidden supergroup'' of D'Auria-Fre): \begin{itemize}% \item [[Silvia Vaula]], \emph{On the underlying $E_{11}$ symmetry of the $D= 11$ Free Differential Algebra}, JHEP 0703:010, 2007 (\href{http://arxiv.org/abs/hep-th/0612130}{arXiv:hep-th/0612130}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Higher T-duality of super M-branes]]} (\href{https://arxiv.org/abs/1803.05634}{arXiv:1803.05634}) \item [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Higher T-duality of super M-branes|Higher T-duality in M-theory via local supersymmetry]]}, Physics Letters B Volume 781 2018 (\href{https://arxiv.org/abs/1805.00233}{arXiv:1805.00233}) \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:Super-exceptional embedding construction of the M5-brane|Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5]]} (\href{https://arxiv.org/abs/1908.00042}{arXiv:1908.00042}) \end{itemize} A super-exceptional geometry for $n = 7$: \begin{itemize}% \item Daniel Butter, [[Henning Samtleben]], [[Ergin Sezgin]], \emph{$E_{7(7)}$ Exceptional Field Theory in Superspace}, JHEP01(2019)087 (\href{https://arxiv.org/abs/1811.00038}{arXiv:1811.00038}) \end{itemize} See also the references on the corresponding [[super-geometry]]-enhancement of [[type II geometry|type II]] [[generalized geometry]] (``[[doubled geometry]]''): \emph{\href{type+II+geometry#ReferencesDoubledSupergeometry}{doubled geometry -- References -- Doubled supergeometry}}. \hypertarget{__}{}\subsubsection*{{$E_6$, $E_7$, $E_8$}}\label{__} [[E6]],[[E7]], [[E8]]-geometry is discussed in \begin{itemize}% \item Christian Hillmann, \emph{Generalized E(7(7)) coset dynamics and D=11 supergravity}, JHEP 0903 (2009) 135 (\href{http://arxiv.org/abs/0901.1581}{arXiv:0901.1581}) \item Hadi Godazgar, Mahdi Godazgar, Hermann Nicolai, \emph{Generalised geometry from the ground up} (\href{http://arxiv.org/abs/1307.8295}{arXiv:1307.8295}) \item [[Olaf Hohm]], [[Henning Samtleben]], \emph{Exceptional Form of $D=11$ Supergravity}, Phys. Rev. Lett. 111, 231601 (2013) (\href{http://arxiv.org/abs/1308.1673}{arXiv:1308.1673}) \end{itemize} (see also at \href{3-dimensional+supergravity#PossibleGaugings}{3d supergravity -- possible gaugings}). \hypertarget{}{}\subsubsection*{{$E_{10}$}}\label{} The [[E10]]-geometry of [[11-dimensional supergravity]] compactified to the line is discussed in \begin{itemize}% \item [[Thibault Damour]], [[Hermann Nicolai]], \emph{Higher order M theory corrections and the Kac-Moody algebra E10} (\href{http://arxiv.org/abs/hep-th/0504153}{arXiv:hep-th/0504153}) \item [[Hermann Nicolai]], \emph{Wonders of $E_{10}$ and $K(E_{10})$} (2008) (\href{http://ipht.cea.fr/Pisp/pierre.vanhove/Paris08/talk_PDF/nicolai.pdf}{pdf}) \item [[Axel Kleinschmidt]], [[Hermann Nicolai]], \emph{Standard model fermions and $K(E_{10})$} (\href{https://arxiv.org/abs/1504.01586}{arXiv:1504.01586}) \end{itemize} \hypertarget{_2}{}\subsubsection*{{$E_{11}$}}\label{_2} Literature discussing $E_{11}$ [[U-duality]] and in the context of [[exceptional generalized geometry]] of [[11-dimensional supergravity]]. Review includes \begin{itemize}% \item [[Peter West]], section 17.5 of \emph{[[Introduction to Strings and Branes]]} \item [[Fabio Riccioni]], \emph{$E_{11}$ and M-theory}, talk at \href{http://www.ift.uam.es/strings07/}{Strings07} (\href{http://member.ipmu.jp/yuji.tachikawa/stringsmirrors/2007/riccioni.pdf}{pdf slides}) \item [[Fabio Riccioni]], [[Peter West]], \emph{The $E_{11}$ origin of all maximal supergravities}, JHEP 0707:063,2007 (\href{http://arxiv.org/abs/0705.0752}{arXiv:0705.0752}, \href{http://inspirehep.net/record/749966/}{spire}) \item [[Paul Cook]], \emph{Connections between Kac-Moody algebras and M-theory} PhD thesis (\href{http://arxiv.org/abs/0711.3498}{arXiv:0711.3498}) \item [[Peter West]], \emph{A brief review of E theory} (\href{http://arxiv.org/abs/1609.06863}{arXiv:1609.06863}) \end{itemize} Original articles include the following: The observation that $E_{11}$ seems to neatly organize the structures in [[11-dimensional supergravity]]/[[M-theory]] is due to \begin{itemize}% \item [[Peter West]], \emph{$E_{11}$ and M theory}, Class. Quant. Grav., 18:4443--4460, 2001. (\href{http://arxiv.org/abs/hep-th/0104081}{arXiv:hep-th/0104081}) \end{itemize} A precursor to (\hyperlink{West01}{West 01}) is \begin{itemize}% \item [[Bernard Julia]], \emph{Dualities in the classical supergravity limits} (\href{http://arxiv.org/abs/hep-th/9805083}{arXiv:hep-th/9805083}) \end{itemize} as explained in (\hyperlink{HenneauxJuliaLevie10}{Henneaux-Julia-Levie 10}). The derivation of the [[equations of motion]] of [[11-dimensional supergravity]] and maximally supersymmetric [[5d supergravity]] from a [[vielbein]] with values in the [[semidirect product]] $E_{11}$ with its [[fundamental representation]] is due to \begin{itemize}% \item [[Peter West]], \emph{Generalised geometry, eleven dimensions and $E_{11}$}, J. High Energ. Phys. (2012) 2012: 18 (\href{http://arxiv.org/abs/1111.1642}{arXiv:1111.1642}) \item Alexander G. Tumanov, [[Peter West]], \emph{$E_{11}$ must be a symmetry of strings and branes}, Physics Letters B Volume 759, 10 August 2016, Pages 663--671 (\href{https://arxiv.org/abs/1512.01644}{arXiv:1512.01644}) \item Alexander G. Tumanov, [[Peter West]], \emph{$E_{11}$ in $11d$}, Physics Letters B Volume 758, 10 July 2016, Pages 278--285 (\href{https://arxiv.org/abs/1601.03974}{arXiv:1601.03974}) \end{itemize} This way that elements of [[cosets]] of the [[semidirect product]] $E_{11}$ with its [[fundamental representation]] may encode [[equations of motion]] of [[11-dimensional supergravity]] follows previous considerations for [[Einstein equations]] in \begin{itemize}% \item [[Abdus Salam]], J. Strathdee, \emph{Nonlinear realizations. 1: The Role of Goldstone bosons, Phys. Rev. 184 (1969) 1750,} \item [[Chris Isham]], [[Abdus Salam]], J. Strathdee, \emph{Spontaneous, breakdown of conformal symmetry}, Phys. Lett. 31B (1970) 300. \item A. Borisov, V. Ogievetsky, \emph{Theory of dynamical affine and conformal symmetries as the theory of the gravitational field}, Theor. Math. Phys. 21 (1973) 1179-1188 (\href{http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tmf&paperid=3902&option_lang=eng}{web}) \item V. Ogievetsky, \emph{Infinite-dimensional algebra of general covariance group as the closure of the finite dimensional algebras of conformal and linear groups}, Nuovo. Cimento, 8 (1973) 988. \end{itemize} Further developments of the proposed $E_{11}$ formulation of [[M-theory]] include \begin{itemize}% \item [[Peter West]], \emph{$E_{11}$, ten forms and supergravity}, JHEP0603:072,2006 (\href{http://arxiv.org/abs/hep-th/0511153}{arXiv:hep-th/0511153}) \item [[Fabio Riccioni]], [[Peter West]], \emph{Dual fields and $E_{11}$}, Phys.Lett.B645:286-292,2007 (\href{http://arxiv.org/abs/hep-th/0612001}{arXiv:hep-th/0612001}) \item [[Fabio Riccioni]], [[Peter West]], \emph{E(11)-extended spacetime and gauged supergravities}, JHEP 0802:039,2008 (\href{http://arxiv.org/abs/0712.1795}{arXiv:0712.1795}) \item [[Fabio Riccioni]], Duncan Steele, [[Peter West]], \emph{The E(11) origin of all maximal supergravities - the hierarchy of field-strengths}, JHEP 0909:095 (2009) (\href{http://arxiv.org/abs/0906.1177}{arXiv:0906.1177}) \item [[Eric Bergshoeff]], I. De Baetselier, T. Nutma, \emph{E(11) and the Embedding Tensor} (\href{http://arxiv.org/abs/0705.1304}{arXiv:0705.1304}, \href{http://mms.technologynetworks.net/posters/0364.pdf}{poster}) \item Guillaume Bossard, [[Axel Kleinschmidt]], Jakob Palmkvist, [[Christopher Pope]], [[Ergin Sezgin]], \emph{Beyond $E_{11}$} (\href{https://arxiv.org/abs/1703.01305}{arXiv:1703.01305}) \end{itemize} Discussion of the [[semidirect product]] of $E_{11}$ with its $l_1$-[[representation]], and arguments that the [[charges]] of the [[M-theory super Lie algebra]] and in fact further brane charges may be identified inside $l_1$ originate in \begin{itemize}% \item [[Peter West]], \emph{$E_{11}$, $SL(32)$ and Central Charges}, Phys.Lett.B575:333- 342,2003 (\href{http://arxiv.org/abs/hep-th/0307098}{arXiv:hep-th/0307098}) \end{itemize} and was further explored in \begin{itemize}% \item [[Axel Kleinschmidt]], [[Peter West]], \emph{Representations of $G^{+++}$ and the role of space-time}, JHEP 0402 (2004) 033 (\href{http://arxiv.org/abs/hep-th/0312247}{arXiv:hep-th/0312247}) \item [[Paul Cook]], [[Peter West]], \emph{Charge multiplets and masses for $E(11)$}, JHEP 11 (2008) 091 (\href{http://arxiv.org/abs/0805.4451}{arXiv:0805.4451}) \item [[Peter West]], \emph{$E_{11}$ origin of Brane charges and U-duality multiplets}, JHEP 0408 (2004) 052 (\href{http://arxiv.org/abs/hep-th/0406150}{arXiv:hep-th/0406150}) \end{itemize} Relation to [[exceptional field theory]] is discussed in \begin{itemize}% \item Alexander G. Tumanov, [[Peter West]], \emph{$E_{11}$ and exceptional field theory} (\href{http://arxiv.org/abs/1507.08912}{arXiv:1507.08912}) \end{itemize} Relation to [[Borcherds superalgebras]] is discussed in \begin{itemize}% \item Pierre Henry-Labordere, [[Bernard Julia]], Louis Paulot, \emph{Borcherds symmetries in M-theory}, JHEP 0204 (2002) 049 (\href{http://arxiv.org/abs/hep-th/0203070}{arXiv:hep-th/0203070}) \item [[Marc Henneaux]], [[Bernard Julia]], J\'e{}r\^o{}me Levie, \emph{$E_{11}$, Borcherds algebras and maximal supergravity} (\href{http://arxiv.org/abs/1007.5241}{arxiv:1007.5241}) \item Jakob Palmkvist, \emph{Tensor hierarchies, Borcherds algebras and $E_{11}$}, JHEP 1202 (2012) 066 (\href{http://arxiv.org/abs/1110.4892}{arXiv:1110.4892}) \end{itemize} [[!redirects exceptional generalized geometry]] [[!redirects exceptional generalized geometries]] [[!redirects exceptional generalized complex geometry]] [[!redirects exceptional generalized complex geometry]] [[!redirects exceptional generalised geometry]] [[!redirects exceptional generalised geometries]] [[!redirects super-exceptional generalised geometry]] [[!redirects super-exceptional generalised geometries]] [[!redirects super-exceptional generalized geometry]] [[!redirects super-exceptional generalized geometries]] \end{document}