\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{excisive (∞,1)-functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{goodwillie_calculus}{}\paragraph*{{Goodwillie calculus}}\label{goodwillie_calculus} [[!include Goodwillie calculus - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SpectrumObjects}{Spectrum objects}\dotfill \pageref*{SpectrumObjects} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ReflectionAndExcisiveApproximation}{Reflection and excisive approximation}\dotfill \pageref*{ReflectionAndExcisiveApproximation} \linebreak \noindent\hyperlink{CharacterizationViaAGenericStableObject}{Characterization via a generic stable object}\dotfill \pageref*{CharacterizationViaAGenericStableObject} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{excisive (∞,1)-functor} $F \colon \mathcal{C} \longrightarrow \mathcal{D}$ is one which sends [[homotopy pushout]] squares to [[homotopy pullback]] squares. If $\mathcal{C}$ is [[pointed object|pointed]] [[finite homotopy types]] and $\mathcal{D}$ is [[spectra]], then this condition is the [[axiom]] of [[excision]] in [[generalized (Eilenberg-Steenrod) cohomology|generalized homotopy]], whence the name. Moreover, if here $\mathcal{D}$ is instead [[∞Grpd]] (i.e. [[homotopy types]]), or more generally any [[(∞,1)-topos]] $\mathbf{H}$, then excisive functors that send the point to the point (up to equivalence) are still equivalent to [[spectra]] ([[spectrum objects]]) -- essentially by the [[Brown representability theorem]] -- and those without restriction are equivalent to [[parameterized spectra]], hence form the [[tangent (∞,1)-topos]] $T \mathbf{H}$. As such, excisive functors are the lowest nontrivial stage in the [[Goodwillie-Taylor tower]] that approximates the [[classifying (∞,1)-topos]] $\mathbf{H}[X_\bullet]$ for [[pointed objects]]. The higher stages of this tower are given by the [[n-excisive (∞,1)-functors]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{ExcisiveFunctor}\hypertarget{ExcisiveFunctor}{} An [[(∞,1)-functor]] $F \colon \mathcal{C} \longrightarrow \mathcal{D}$ out of an [[(∞,1)-category]] with [[finite (∞,1)-colimits]] is \textbf{excisive} if it takes [[(∞,1)-pushout]] squares in $\mathcal{C}$ to [[(∞,1)-pullback]] squares $\mathcal{D}$. This is the $n=1$ case of the concept of \emph{[[n-excisive (∞,1)-functor]]}. \end{defn} (e.g. \hyperlink{HigherAlg}{HigherAlg, def. 1.4.2.1.}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{SpectrumObjects}{}\subsubsection*{{Spectrum objects}}\label{SpectrumObjects} Write $\infty Grpd_{fin}$ for the [[(∞,1)-category]] of [[finite homotopy types]], hence those freely generated by [[finite (∞,1)-colimits]] from the point. Write $\infty Grpd_{fin}^{\ast/}$ for the [[pointed object|pointed]] finite homotopy types. \begin{defn} \label{SpectraAsExcisiveFunctors}\hypertarget{SpectraAsExcisiveFunctors}{} Let $\mathcal{C}$ be an [[(∞,1)-category]] with [[finite (∞,1)-limits]]. Then \textbf{[[spectrum objects]]} in $\mathcal{C}$ are equivalently [[reduced (infinity,1)-functor|reduced]] [[excisive (∞,1)-functor]] of the form \begin{displaymath} \infty Grpd_{fin}^{\ast/} \longrightarrow \mathcal{C} \,. \end{displaymath} \end{defn} (Sometimes, e.g. in \hyperlink{HigherAlg}{Lurie, def. 1.4.2.8}, this is taken as the very definition of spectrum objects). A proof of prop. \ref{SpectraAsExcisiveFunctors} passing through [[model category]] [[presentable (infinity,1)-category|presentations]] for excisive $\infty$-functors and of the [[Bousfield-Friedlander model structure]] for [[sequential spectra]] is due to (\hyperlink{Lydakis98}{Lydakis 98}), see at \emph{[[model structure for excisive functors]]} at \emph{\href{model+structure+for+excisive+functors#ModelStructureForSpectra}{Relation to BF-model structure on sequential spectra}}. The idea of the equivalence is as follows. Let $E$ be a reduced excisive functor. For each $n \in \mathbb{N}$, write $S^n \in \infty Grpd_{fin}^{\ast/}$ for the [[n-sphere]] and write $E_{n} \coloneqq E(S^n)$. We have the homotopy pushout squares \begin{displaymath} \itexarray{ S^n &\longrightarrow& \ast \\ \downarrow & & \downarrow \\ \ast &\longrightarrow& S^{n+1} } \end{displaymath} and since $E$ sends them to homotopy pullbacks with the point going to the point, this gives equivalences \begin{displaymath} E_n \stackrel{\simeq}{\longrightarrow} \Omega E_{n+1} \,. \end{displaymath} This makes $E_\bullet$ have the structure of an [[Omega spectrum]]. The idea then is that as such it represents a [[generalized homology theory]] and the value of the excisive functor on any finite homotopy type $X$ is then $\Omega^\infty(E \wedge X)$ (see \hyperlink{HigherAlg}{Lurie, remark 1.4.3.3}). \begin{remark} \label{RelationToGeneralizedHomologyTheories}\hypertarget{RelationToGeneralizedHomologyTheories}{} The traditional definition of a [[generalized homology theory]] is as a functor on (finite) homotopy types with values in [[graded abelian groups]]. The [[Brown representability theorem]] says that these all arise from [[spectra]] $E$ via taking [[stable homotopy groups]] of [[smash products]]: $X \mapsto E_\bullet(X) \coloneqq \pi_\bullet(E \wedge X)$. But due to the existence of [[phantom maps]], this does not quite yield an [[equivalence of (infinity,1)-categories|equivalence]] between spectra and generalized homology theories. In view of this, the proof of prop. \ref{SpectraAsExcisiveFunctors} may be thought of saying that this mismatch is fixed by refining homotopy groups by full [[homotopy types]] $X \mapsto \Omega^\infty(E\wedge X)$. Notice also that spectra realized as excisive functors this way are in the spirit of [[coordinate-free spectra]]. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} For the moment we focus on properties of the case of excisive functors $\mathcal{C} \to \mathcal{D}$ for $\mathcal{C} = \infty Grpd_{fin}^{\ast/}$ and $\mathcal{D} = \mathbf{H}$, hence on \begin{displaymath} Exc(\infty Grpd_{fin}^{\ast/}, \mathbf{H}) \simeq T \mathbf{H} \hookrightarrow \mathbf{H}[X_\ast] \,. \end{displaymath} \begin{defn} \label{ClassifyingToposForPointedObjects}\hypertarget{ClassifyingToposForPointedObjects}{} Write $\infty Grpd_{fin}$ is the [[(∞,1)-category]] of [[finite homotopy types]]. For $\mathbf{H}$ a given [[base (∞,1)-topos]], write \begin{displaymath} \begin{aligned} \mathbf{H}[X_\ast] & \simeq [\infty Grpd_{fin}^{\ast/}, \mathbf{H}] \\ & \simeq PSh((\infty Grpd_{fin}^{\ast/})^{op}, \mathbf{H}) \end{aligned} \end{displaymath} for the [[classifying (∞,1)-topos]] (over $\mathbf{H}$) for [[pointed objects]]. \end{defn} \hypertarget{ReflectionAndExcisiveApproximation}{}\subsubsection*{{Reflection and excisive approximation}}\label{ReflectionAndExcisiveApproximation} \begin{defn} \label{P1}\hypertarget{P1}{} Write \begin{displaymath} T_1 \colon \mathbf{H}[X_\ast] \longrightarrow \mathbf{H}[X_\ast] \end{displaymath} for the functor given by \begin{displaymath} E \mapsto \Omega_{E(\ast)} E(\Sigma(-)) \,. \end{displaymath} Write \begin{displaymath} P_1 \coloneqq \underset{\longrightarrow}{\lim}_{n} T_1^{n} \end{displaymath} for the [[homotopy colimit]] of the iterations of this functor, with respect to the canonical comparison map. \end{defn} Unwinding the definition and using that [[suspension]] is equivalently the \href{join%20of%20topological%20spaces#JoinWith0Sphere}{join with the 0-sphere}, this is indeed the functor of the same name in (\hyperlink{Goodwillie03}{Goodwillie 91, p. 657 (13 of 67)}). \begin{theorem} \label{PnLocalizes}\hypertarget{PnLocalizes}{} The inclusion of excisive functors into $\mathbf{H}[X_*]$ is a [[reflective sub-(∞,1)-category]] with reflector given by $P_1$ from def. \ref{P1}: \begin{displaymath} T \mathbf{H} \stackrel{\overset{P_1}{\longleftarrow}}{\hookrightarrow} \mathbf{H}[X_\ast] \end{displaymath} \end{theorem} This is due (in the generality of \emph{\href{https://ncatlab.org/nlab/show/n-excisive+functor#nExcisiveApproximation}{n-excisive functor -- n-Excisive Approximation and reflection}}) to (\hyperlink{Goodwillie91}{Goodwillie 91, theorem 1.8}). See also (\hyperlink{HigherAlg}{Lurie, theorem 6.1.1.10, construction 6.1.1.27}). \begin{prop} \label{ExcisiveApproximation}\hypertarget{ExcisiveApproximation}{} Let $\mathcal{C}$ have finite colimits and a terminal object and let $\mathcal{D}$ be differentiable. The excisive approximation of a [[reduced functor]] $F \colon \mathcal{C} \to \mathcal{D}$ is the [[(infinity,1)-colimit]] \begin{displaymath} P_1 F \simeq \underset{\longrightarrow_{\mathrlap{k}}}{\lim} ( \Omega^k \circ F \circ \Sigma^k) \end{displaymath} (where $\Omega$ and $\Sigma$ denote [[looping]] and [[suspension]] in $\mathcal{D}$ and in $\mathcal{C}$, respectively). \end{prop} (\hyperlink{HigherAlg}{Lurie, example 6.1.1.28}) \begin{remark} \label{}\hypertarget{}{} Under the equivalence to [[sequential spectra]] in prop. \ref{SpectraAsExcisiveFunctors}, the formula in prop. \ref{ExcisiveApproximation} is the standard formula for [[spectrification]] of [[prespectra]]. \end{remark} \hypertarget{CharacterizationViaAGenericStableObject}{}\subsubsection*{{Characterization via a generic stable object}}\label{CharacterizationViaAGenericStableObject} We discuss a characterization of excisive functors on $\infty Grpd_{fin}^{\ast/}$, hence of [[parameterized spectra]], as the result of [[forcing]] a generic pointed object to become a [[stable homotopy type]]. This general perspective is being highlighted by \hyperlink{AnelFinsterJoyal}{Anel-Finster-Joyal}. For a slick formulation, we use a generalization of [[powering]] to pointed powers: \begin{defn} \label{PointedPower}\hypertarget{PointedPower}{} For $X$ an object in an [[(∞,1)-category]] $\mathcal{C}$ with [[finite (∞,1)-limits]], and for $S_\ast \in \infty Grpd_{fin}^{\ast/}$ a pointed [[finite ∞-groupoid]], then the \emph{pointed power} \begin{displaymath} X^{S_\ast} \in \mathcal{C} \end{displaymath} is the object which is the image of $S$ under the essentially unique [[(∞,1)-functor]] \begin{displaymath} (\infty Grpd_{fin}^{\ast/})^\op \longrightarrow \mathcal{C} \end{displaymath} which preserves [[finite (∞,1)-limits]] and sends $S^0 \leftarrow \ast$ to $X_\ast \to \ast$. \end{defn} \begin{prop} \label{}\hypertarget{}{} Excisive functors $\infty Grpd_{fin}^{\ast/} \longrightarrow \mathbf{H}$, def. \ref{ExcisiveFunctor}, are the [[localization of an (∞,1)-category|localization]] of $\mathbf{H}[X_\ast]$, def. \ref{ClassifyingToposForPointedObjects}, at the set of morphisms \begin{displaymath} \left\{ \Sigma \Omega (X_\ast^{S_\ast}) \longrightarrow X_\ast^{S_\ast} \right\}_{S \in \infty Grpd_{fin}^{\ast/}} \,, \end{displaymath} (where $X_{\ast}^{S_\ast}$ is the pointed power, def. \ref{PointedPower}, of the generic pointed object $X_\ast \in \mathbf{H}[X_\ast]$): \begin{displaymath} T \mathbf{H}\simeq \mathbf{H}[X_\ast][ (\Sigma \Omega X_\ast^\bullet \to X_\ast^\bullet)^{-1} ] \,. \end{displaymath} In other words, the [[parameterized spectra]] are those objects in $\mathbf{H}[X_\ast]$ which regard each finite pointed power of the generic pointed object $X_\ast$ as a [[stable homotopy type]]. \end{prop} \begin{proof} For $K \in \infty Grpd_{fin}^{\ast/}$, write $R(K) \in (\infty Grpd_{fin}^{\ast/})^{op} \hookrightarrow \mathbf{H}[X_\ast]$ for its [[formal dual]] under [[(∞,1)-Yoneda embedding]]. Since the [[(∞,1)-Yoneda embedding]] preserves [[(∞,1)-limits]], we have \begin{displaymath} R(K)^S \simeq R(S \cdot K) \,. \end{displaymath} Observe that the generic pointed object in $\mathbf{H}[X_\ast]$ is that [[representable functor|represented]] by the [[0-sphere]]: \begin{displaymath} X_\ast = R(S^0) \,. \end{displaymath} Hence \begin{displaymath} X_\ast^S \simeq R(S) \,. \end{displaymath} Now using the [[(∞,1)-Yoneda lemma]] we have for each $E \in \mathbf{H}[X_\ast]$ that \begin{displaymath} \begin{aligned} Hom( \Sigma \Omega R(K), E ) &\simeq \Omega_{E(\ast)} Hom(\Omega R(K),E) \\ & \simeq \Omega_{E(\ast)} Hom( R(\Sigma K), E ) \\ & \simeq \Omega_{E(\ast)} E(\Sigma K) \end{aligned} \,. \end{displaymath} Hence for all $K \in \infty Grpd_{fin}^{\ast/}$ \begin{displaymath} \begin{aligned} Hom(\Sigma \Omega R(K) \to R(K), E) & \simeq ( E(K) \longrightarrow \Omega(\Sigma K) ) \\ & = (E \to T_1 E)(K) \end{aligned} \,, \end{displaymath} where in the last line we observe that the expression is that for the comparison map in def. \ref{P1}. This means that the [[local objects]] are precisely those $E$ for which the morphism \begin{displaymath} E \longrightarrow T_1 E \end{displaymath} from def. \ref{P1} is an equivalence. With this the statement follows from theorem \ref{PnLocalizes}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[exact (∞,1)-functor]] \item [[n-excisive (∞,1)-functor]] \item [[model structure for excisive functors]] \item [[spectrum object]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of [[n-excisive functors]] was introduced in \begin{itemize}% \item [[Thomas Goodwillie]], \emph{Calculus II, Analytic functors}, K-Theory 5 (1991/92), no. 4, 295-332 \end{itemize} The [[Taylor tower]] formed by $n$-excisive functors was then studied in \begin{itemize}% \item [[Thomas Goodwillie]], \emph{Calculus III: Taylor Series}, Geom. Topol. 7(2003) 645-711 (\href{http://arxiv.org/abs/math/0310481}{arXiv:math/0310481}) \end{itemize} A discussion in the general abstract context of [[(∞,1)-category theory]] is in \begin{itemize}% \item [[Jacob Lurie]], section 6.1.1 of \emph{[[Higher Algebra]]} \end{itemize} Review includes \begin{itemize}% \item [[Yonatan Harpaz]], section 5 of \emph{Introduction to stable $\infty$-categories}, October 2013 ([[HarpazStableInfinityCategory2013.pdf:file]]) \end{itemize} A [[model structure for excisive functors]] was given in \begin{itemize}% \item Lydakis, \emph{Simplicial functors and stable homotopy theory} Preprint, available via Hopf archive, 1998 (\href{http://hopf.math.purdue.edu/Lydakis/s_functors.pdf}{pdf}) \end{itemize} Discussion in terms of [[stable homotopy types]] is due to \begin{itemize}% \item [[Mathieu Anel]], [[Eric Finster]], [[André Joyal]], in preparation \end{itemize} [[!redirects excisive (∞,1)-functors]] [[!redirects excisive (infinity,1)-functor]] [[!redirects excisive (infinity,1)-functors]] [[!redirects excisive ∞-functor]] [[!redirects excisive ∞-functors]] [[!redirects excisive infinity-functor]] [[!redirects excisive infinity-functors]] [[!redirects excisive functor]] [[!redirects excisive functors]] [[!redirects pre-excisive functor]] [[!redirects pre-excisive functors]] [[!redirects preexcisive functor]] [[!redirects preexcisive functors]] \end{document}