\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{excluded middle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{foundations}{}\paragraph*{{Foundations}}\label{foundations} [[!include foundations - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{RelationToTheAxiomOfChoice}{Relation to the axiom of choice}\dotfill \pageref*{RelationToTheAxiomOfChoice} \linebreak \noindent\hyperlink{DoubleNegatedPEM}{Double-negated PEM}\dotfill \pageref*{DoubleNegatedPEM} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_the_axiom_of_choice_2}{Relation to the axiom of choice}\dotfill \pageref*{relation_to_the_axiom_of_choice_2} \linebreak \noindent\hyperlink{ReferencesInHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{ReferencesInHomotopyTypeTheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[logic]], the principle of \textbf{excluded middle} states that every [[truth value]] is either [[true]] or [[false]] (\hyperlink{AristotleMetaphysics}{Aristotle, MP1011b24}). (This is sometimes called the `[[axiom]]' or `law' of excluded middle, either to emphasise that it is or is not optional; `principle' is a relatively neutral term.) One of the many meanings of [[classical logic]] is to emphasise that this principle holds in the logic; in contrast, it fails in [[intuitionistic logic]]. The principle of excluded middle (hereafter, PEM), as a statement about truth values themselves, is accepted by nearly all mathematicians ([[classical mathematics]]); those who doubt or deny it are a distinct minority, the [[constructive mathematics|constructivists]]. However, when one [[internalization|internalises]] mathematics in [[categories]] other than [[Set|the category of sets]], there is no doubt that excluded middle often fails [[internal logic|internally]]. See the examples listed at [[internal logic]]. (Those categories in which excluded middle holds are called [[Boolean category|Boolean]]; in general, the adjective `Boolean' is often used to indicate the applicability of PEM.) Although the term `excluded middle' (sometimes even \emph{excluded third}) suggests that the principle does not apply in many-valued logics, that is not the point; many-valued logics are many-valued \emph{externally} but may still be two-valued \emph{internally}. In the language of [[categorial logic]], whether a category has exactly two [[subterminal objects]] is in general independent of whether it is Boolean; instead, the category is Boolean iff the statement that it has exactly two subterminal objects holds in its [[internal logic]] (which is in general independent of whether that statement is true). In fact, intuitionistic logic proves that there is no truth value that is neither true nor false; in this sense, the possibility of a `middle' or `third' truth value is still `excluded'. But since the relevant [[de Morgan law]] fails in intuitionistic logic, we may not conclude that every truth value is either true or false, which is the actual PEM. \hypertarget{RelationToTheAxiomOfChoice}{}\subsection*{{Relation to the axiom of choice}}\label{RelationToTheAxiomOfChoice} Excluded middle can be seen as a very weak form of the [[axiom of choice]] (a slightly more controversial principle, doubted or denied by a slightly larger minority, and true internally in even fewer categories). In fact, the following are equivalent. (this is the [[Diaconescu-Goodman-Myhill theorem]] due to \hyperlink{Diaconescu75}{Diaconescu 75}, see also \hyperlink{McLarty96}{McLarty 96, theorem 19.7}, ) \begin{enumerate}% \item The principle of excluded middle. \item [[finite set|Finitely indexed]] sets are [[projective object|projective]] (in fact, it suffices 2-indexed sets to be projective). \item [[finite set|Finite sets]] are [[choice object|choice]] (in fact, it suffices for 2 to be choice). \end{enumerate} (Here, a set $A$ is \textbf{finite} or \textbf{finitely-indexed} (respectively) if, for some natural number $n$, there is a bijection or surjection (respectively) $\{0, \ldots, n - 1\} \to A$.) The proof is as follows. If $p$ is a truth value, then divide $\{0,1\}$ by the equivalence relation where $0 \equiv 1$ iff $p$ holds. Then we have a surjection $2\to A$, whose domain is $2$ (and in particular, finite), and whose codomain $A$ is finitely-indexed. But this surjection splits iff $p$ is true or false, so if either $2$ is choice or $2$-indexed sets are projective, then PEM holds. On the other hand, if PEM holds, then we can show by induction that if $A$ and $B$ are choice, so is $A\sqcup B$ (add details). Thus, all finite sets are choice. Now if $n\to A$ is a surjection, exhibiting $A$ as finitely indexed, it has a section $A\to n$. Since a finite set is always projective, and any retract of a projective object is projective, this shows that $A$ is projective. In particular, the axiom of choice implies PEM. This argument, due originally to Diaconescu, can be internalized in any [[topos]]. However, other weak versions of choice such as [[countable choice]] (any surjection to a countable set (which for this purpose is any set isomorphic to the set of natural numbers) has a section), [[dependent choice]], or even [[COSHEP]] do not imply PEM. In fact, it is often claimed that axiom of choice is \emph{true} in constructive mathematics (by the BHK or [[Brouwer-Heyting-Kolmogorov interpretation]] of predicate logic), leading to much argument about exactly what that means. \hypertarget{DoubleNegatedPEM}{}\subsection*{{Double-negated PEM}}\label{DoubleNegatedPEM} While PEM is not valid in constructive mathematics, its double negation \begin{displaymath} \neg\neg(A\vee \neg A) \end{displaymath} is valid. One way to see this is to note that $\neg (A\vee B) = \neg A \wedge \neg B$ is one of [[de Morgan's laws]] that is constructively valid, and $\neg (\neg A \wedge \neg\neg A)$ is easy to prove (it is an instance of the [[law of non-contradiction]]). However, a more direct argument makes the structure of the proof more clear. When [[beta-reduced]], the [[proof term]] is $\lambda x. x(inr(\lambda a. x(inl(a))))$. This means that we first assume $\neg (A\vee \neg A)$ for a contradiction, for which it suffices (by assumption) to prove $A\vee \neg A$. We prove that by proving $\neg A$, which we prove by assuming $A$ for a contradiction. But now we can reach a contradiction by invoking (again) our assumption of $\neg (A\vee \neg A)$ and proving $A\vee \neg A$ this time using our new assumption of $A$. In other words, we start out claiming that $\neg A$, but whenever that ``bluff gets called'' by someone supplying an $A$ and asking us to yield a contradiction, we retroactively change our minds and claim that $A$ instead, using the $A$ that we were just given as evidence. In particular, this shows how the [[double negation]] [[modality]] can be regarded computationally as a sort of [[continuation-passing]] transform. However, there is another meaning of ``double negated PEM'' that is not valid. The above argument shows that \begin{displaymath} \forall A, \neg\neg(A\vee \neg A). \end{displaymath} But a stronger statement is \begin{displaymath} \neg\neg \forall A, (A \vee \neg A). \end{displaymath} This is related to the above valid statement by a [[double-negation shift]]; and in fact, the truth of $\neg\neg \forall A, (A \vee \neg A)$ is equivalent to the principle of double-negation shift. In particular, it is \emph{not} constructively provable. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[axiom of choice]] \item [[law of double negation]] \item [[proof by contradiction]] \item [[De Morgan law]] \item [[Cantor-Schroeder-Bernstein theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Colin McLarty]], \emph{Elementary Categories, Elementary Toposes}, Oxford University Press, 1996 \end{itemize} \hypertarget{relation_to_the_axiom_of_choice_2}{}\subsubsection*{{Relation to the axiom of choice}}\label{relation_to_the_axiom_of_choice_2} Relation to the [[axiom of choice]] ([[Diaconescu-Goodman-Myhill theorem]]): \begin{itemize}% \item [[Radu Diaconescu]], \emph{Axiom of choice and complementation}, Proceedings of the American Mathematical Society 51:176-178 (1975) (\href{https://doi.org/10.1090/S0002-9939-1975-0373893-X}{doi:10.1090/S0002-9939-1975-0373893-X}) \item N. D. Goodman J. Myhill, \emph{Choice Implies Excluded Middle}, Zeitschrift fuer Mathematische Logik und Grundlagen der Mathematik 24:461 (1978) \end{itemize} Discussion in [[toposes]] is for instance in \hypertarget{ReferencesInHomotopyTypeTheory}{}\subsubsection*{{In homotopy type theory}}\label{ReferencesInHomotopyTypeTheory} \begin{itemize}% \item [[Aristotle]], \emph{[[Metaphysics (Aristotle)|Metaphysics]]}, 1011b24: ``Of any one subject, one thing must be either asserted or denied'' \end{itemize} In [[homotopy type theory]]: \begin{itemize}% \item [[Univalent Foundations Project]], section 3.5 \emph{[[Homotopy Type Theory -- Univalent Foundations of Mathematics]]} \end{itemize} category: foundational axiom [[!redirects Excluded Middle]] [[!redirects excluded middle]] [[!redirects law of excluded middle]] [[!redirects the law of excluded middle]] [[!redirects principle of excluded middle]] [[!redirects the principle of excluded middle]] [[!redirects axiom of excluded middle]] [[!redirects the axiom of excluded middle]] \end{document}