\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exercise in groupoidification - the path integral} \begin{quote}% under construction \end{quote} On the formalization of the process of [[quantization]] -- by [[category theory|abstract nonsense]] -- from classical [[∞-model]] data to the corresponding [[quantum field theory]] . \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{background_and_motivation}{Background and motivation}\dotfill \pageref*{background_and_motivation} \linebreak \noindent\hyperlink{general_ambient_structure}{General ambient structure}\dotfill \pageref*{general_ambient_structure} \linebreak \noindent\hyperlink{the_charged_particle}{The charged particle}\dotfill \pageref*{the_charged_particle} \linebreak \noindent\hyperlink{target_space_and_background_field}{Target space and background field}\dotfill \pageref*{target_space_and_background_field} \linebreak \noindent\hyperlink{parameter_space_and_kinetic_action}{Parameter space and kinetic action}\dotfill \pageref*{parameter_space_and_kinetic_action} \linebreak \noindent\hyperlink{the_quantization}{The quantization}\dotfill \pageref*{the_quantization} \linebreak \hypertarget{background_and_motivation}{}\subsection*{{Background and motivation}}\label{background_and_motivation} The search is on for the abstract formalization of the process of \emph{[[quantization]]} -- the process that reads in a ``[[classical field theory]]'' -- for instance presented in form of a [[gauge theory]] or in form of a [[∞-model]] background field data -- and spits out the corresponding [[quantum field theory]]. There is an open problem of mathematical (-[[physics]]) model building: \begin{itemize}% \item what is the true formalism behind [[quantization]]? \end{itemize} One that is to quantization as, say, [[symplectic geometry]] is to [[Hamiltonian mechanics]]? The formalism of [[FQFT]] clearly suggests that the fundamental description of [[quantization]] is some natural operation on higher functors. While for various aspects and facets of this question there are well-developed formalisms -- such as [[geometric quantization]] or [[deformation quantization]] or [[BV-BRST formalism]] -- a full answer is certainly still missing, not the least because the full formalization of the \emph{question} itself has still to be established. Considerable progress on this formulation of the question has been achieved with the formalization and proof of the [[cobordism hypothesis]] in \emph{[[On the Classification of Topological Field Theories]]} by [[Jacob Lurie]]. This at least indicates what the \emph{result} of any full quantization procedure should be in that it clarifies what exactly a [[TQFT]] [[FQFT]] is: a morphism from the [[(∞,n)-category of cobordisms]] $Z : Bord_n \to C$. In \emph{[[On the Classification of Topological Field Theories]]} Jacob Lurie indicates some first towards finding a similar formalization of ``classical field theory'' (in terms of his $(\infty,n)$-categories of ``families'') and a systematic procedure for turning the classical theory into the quantum theory. These thoughts were further developed in the article \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} . But for the moment, that, too, remains a bit sketchy. For the purpose of the present entry this indication of a quantizaton proposal by Lurie et al. mainly serves as a reference for the idea itself that a formalization of something interesting is to be sought here, and of the kind of [[category theory|abstract nonsense]] answer one hopes to find. We will however discuss a somewhat different-looking approach. It may well be related to the Lurie-et al proposal in the end, but for the time being we shall not concentrate on that relation. Rather, the approach for a formalization of the quantization procedure that shall be discussed at this entry here draws from a few different sources: \begin{enumerate}% \item The observation that a classical background field that should serve as the input for a quantization of a $\sigma$-model that describes the dynamics of an object charged under this field is encoded by differential cocycles as as described at [[schreiber:differential cohomology in an (∞,1)-topos]]. \item The idea that by applying a pull-push quantization prescription a differential cocycle on a target space $X$ gives rise to a differential cocycle on a \emph{parameter space} $\Sigma$, which may be thought of as one of the bordisms appearing in the [[FQFT]]-description of quantum field theory. The pull-push operation here is akin to that in [[geometric ∞-function theory]], where a [[quantum field theory]] is obtained from a [[∞-model]] target space object $X$ by homming [[extended cobordism]] [[cospan]]s $\Sigma_in \to \Sigma \leftarrow \Sigma_{out}$ into the target object and then pull-pushing [[geometric function object]]s through the resulting [[span]]s of configuration space objects $[\Sigma_{in},X] \leftarrow [\Sigma,X] \to [\Sigma_{out},X]$. The main result of David Ben-Zvi et. al.`s work on this approach is that they point out that as soon as the [[geometric function object]] one uses satisfies the two [[geometric ∞-function theory|fundamental theorems of geometric infinity-function theory]], a considerable amount of rich structure that has in parts been known by itself gets unified into one coherent elegant story: the nature of partition functions (i.e. traces), of centers, of Hochschild (co)homology, Deligne-Kontsevich-statements, etc. all are understood by means of a suitable [[geometric function theory]] as induced from the underlying geometry of configuration space objects $[\Sigma,X]$ as well as the [[loop space object]]s of $X$. The resulting pull-push operation is an example or a generalization of what [[John Baez]] discusses under the term [[groupoidification]]. \item The observation that a differential coccycle on a [[Lorentzian manifold]] $\Sigma$ gives rise to a [[local net]] of observables, as used in the formalizaton of QFT known as [[AQFT]]. (As described \href{http://ncatlab.org/schreiber/files/AQFTfromFQFT.pdf}{here}). So the procedure discussed here regards differential cocycles on target space as classicai field theories, regards their quantization as a way to obtain a differential cocycle on Lorentzian parameter space, and identifies this as a quantum field theory by associating a local net of observables to it. These local nets, in turn, are akin to [[factorization algebra]]s, which in the Euclidean (meaning non-Lorentzian setting) relate back to cobordism representations via the notion of [[topological chiral homology]]. However the -- physically crucial -- Lorentzian structure invoked here is not otherwise considered in these functorial axiomatization of quantum field theory. \end{enumerate} \hypertarget{general_ambient_structure}{}\subsection*{{General ambient structure}}\label{general_ambient_structure} The ambient context is the [[(∞,1)-topos]] $\mathbf{H} := Sh_{(\infty,1)}(CartSp)$ of [[Lie ∞-groupoid]]s and the $(\infty,2)$-topos of smooth $(\infty,1)$-categories, which we model, respectively, as the [[Bousfield localization of model categories|left Bousfield localization]] of the [[model structure on functors]] $[CartSp^{op}, sSet_{Quillen}]$ and $[CartSp^{op}, sSet^+]$, respectively, where \begin{itemize}% \item [[CartSp]] is the site of Cartesian spaces, \item $sSet_{Quillen}$ the standard [[model structure on simplicial sets]]; \item and $sSet^+$ the [[model structure for Cartesian fibrations]] over the points, hence the [[simplicial model category]] for quaasi-categories. \end{itemize} For the definition of the [[schreiber:path ∞-groupoid]] functor $\mathbf{\Pi}$ and the induced theory of [[schreiber:differential cohomology in an (∞,1)-topos]], we make use of the discussion at [[schreiber:differential cohomology in an (∞,1)-topos -- survey]]. When working with fibrant objects in the model, we will frequently use the constructions and notation from [[category of fibrant objects]]. Notably for $\mathbf{B}G$ a fibrant [[delooping]] object in the model we write $(\mathbf{B}G)^I$ for the [[path object]] we write $\mathbf{E}G$ for the [[pullback]] \begin{displaymath} \itexarray{ \mathbf{E}G &\to& * \\ \downarrow && \downarrow \\ (\mathbf{B}G)^I &\stackrel{d_1}{\to}& \mathbf{B}G } \end{displaymath} and $\mathbf{E}G \to \mathbf{B}G$ for the remaining map, induced from $d_0 : (\mathbf{B}G)^I \to \mathbf{B}G$. \hypertarget{the_charged_particle}{}\subsection*{{The charged particle}}\label{the_charged_particle} We describe the general theory for the simple example of the charged particle. \hypertarget{target_space_and_background_field}{}\subsubsection*{{Target space and background field}}\label{target_space_and_background_field} The background field for the charged particle that we want to consider is the [[electromagnetic field]]. The data involved is \begin{itemize}% \item the \textbf{target space} $X$ -- a smooth [[manifold]]; \item the \textbf{structure group} or \textbf{gauge group} $G = U(1)$; \item a choice of representation \begin{displaymath} \rho : \mathbf{B}G \to Vect_{\mathbb{C}} \,, \end{displaymath} taken to be the canonical representation on $V = \mathbb{C}$; \item the \textbf{background field} given by a \begin{itemize}% \item a $U(1)$-[[principal bundle]] $P \to X$ classified by a [[cocycle]] $g : X \to \mathbf{B}U(1)$ in $\mathbf{H}$ which in the model is given by an [[anafunctor]] $X \stackrel{\simeq}{\leftarrow} Y \to \mathbf{B}U(1)$; \item a [[connection on a bundle|connection]] $\nabla$ on this bundle, which in the model is given by a diagram \begin{displaymath} \itexarray{ Y &\stackrel{g}{\to}& \mathbf{B}U(1) \\ \downarrow && \downarrow \\ \mathbf{\Pi}(Y) &\stackrel{\nabla}{\to}& \mathbf{E}\mathbf{B}U(1) } \,, \end{displaymath} and whose [[field strength]] is given by the composite \begin{displaymath} F : \mathbf{\Pi}(Y) \stackrel{\nabla}{\to} \mathbf{E}\mathbf{B}U(1) \to \mathbf{B}^2 U(1) \,. \end{displaymath} \end{itemize} \end{itemize} \hypertarget{parameter_space_and_kinetic_action}{}\subsubsection*{{Parameter space and kinetic action}}\label{parameter_space_and_kinetic_action} Let $\Sigma = \mathbb{R}$ be the \textbf{parameter space}, the \textbf{worldline}, regarded as a [[Lorentzian manifold]] and write $\mathbf{\Pi}(\Sigma)$ for the \href{http://ncatlab.org/nlab/show/smooth+Lorentzian+space#PathnCategory}{Lorentzian path category}. To define the kinetic action, we first form the $\rho$-associated background field \begin{displaymath} \itexarray{ X &\stackrel{g}{\to}& \mathbf{B}U(1) &\stackrel{\rho}{\to}& Vect \\ \downarrow && \downarrow && \downarrow \\ \mathbf{\Pi}(X) &\stackrel{\nabla}{\to}& \mathbf{E} \mathbf{B}U(1) &\stackrel{}{\to}& \mathbf{E}\mathbf{B}U(1) \coprod_{\mathbf{B}U(1)} Vect } \end{displaymath} and then pull this back to the [[multisymplectic geometry|extended configuration space]] $X \times \Sigma$. The morphisms in the [[product]] category $\mathbf{\Pi}(X) \times \mathbf{\Pi}(\Sigma)$ are paths $\gamma_X : [0,1] \to X$ in $X$ on whose base we have a (pseudo)[[Riemannian metric]], which is the pullback of the metric $\mu_\Sigma$ on $\Sigma$ along $\gamma_\Sigma : [0,1] \to \Sigma$. We can consider the \emph{kinetic action} to be a differential cocycle \begin{displaymath} \itexarray{ \Sigma \times X &\stackrel{}{\to}& \mathbf{B}U(1) &\stackrel{}{\to}& Vect \\ \downarrow && \downarrow && \downarrow \\ \mathbf{\Pi}(\Sigma) \times \mathbf{\Pi}(X) &\to& \mathbf{E} \mathbf{B}U(1) &\stackrel{}{\to}& \mathbf{E}\mathbf{B}U(1) \coprod_{\mathbf{B}U(1)} Vect } \end{displaymath} which sends the path $\gamma_X : [0,1] \to X$ of parameter length $\gamma_\Sigma : [0,1] \to \Sigma$ to \begin{displaymath} \mathbb{C} \stackrel{\exp(-\frac{1}{i \hbar}\int_{0}^1 |\gamma'_X|^2 d \gamma_\Sigma}{\to} \mathbb{C} \,. \end{displaymath} Notice that $\mathbf{\Pi}(X)\times \mathbf{\Pi}(\Sigma) \simeq \mathbf{\Pi}(X \times \Sigma)$. \hypertarget{the_quantization}{}\subsubsection*{{The quantization}}\label{the_quantization} The total action is differential cocycle \begin{displaymath} \itexarray{ \Sigma \times X &\stackrel{}{\to}& Vect \\ \downarrow && \downarrow \\ \mathbf{\Pi}(\Sigma) \times \mathbf{\Pi}(X) &\stackrel{\exp(S_{kin})tra_\nabla}{\to}& \mathbf{E}\mathbf{B}\mathbb{R} \coprod_{\mathbf{B}U(1)} Vect } \,. \end{displaymath} We want to consider the diagram \begin{displaymath} \itexarray{ \Sigma \times X & \to& Vect \\ \downarrow & \searrow && \searrow \\ \Sigma && \mathbf{\Pi}(\Sigma)\times \mathbf{\Pi}(X) &\to& \mathbf{E}\mathbf{B}U(1)\coprod_{\mathbf{B}U(1)} Vect \\ & \searrow & \downarrow \\ && \mathbf{\Pi}(\Sigma) } \end{displaymath} and use it to obtain a differential cocycle on $\Sigma$, by forming something like a lax pullback (``comma object'') of the point inclusion \begin{displaymath} \itexarray{ * &\to& * \\ \downarrow && \downarrow \\ Vect &\to& Vect \coprod_{\mathbf{B}U(1)} \mathbf{E}\mathbf{B}U(1) } \,, \end{displaymath} where the left vertical morphism picks the ground field $\mathbb{C}$, along this cocycle. For the underlying cocycle this is obtained as the ordinary pullback of $\mathbf{E}Vect$ defined as the ordinary pullback \begin{displaymath} \itexarray{ \mathbf{E}Vect &\to& * \\ \downarrow && \downarrow^{\mathrlap{k}} \\ Vect^I &\stackrel{d_1}{\to}& Vect } \,, \end{displaymath} where $I$ is the [[interval category]], $Vect^I$ the [[functor category]] and $k : * \to Vect$ picks the ground field vector space. Via the remaining map $d_0 : Vect^I \to Vect$ this maps to $Vect$ and then further to $Vect \coprod_{\mathbf{B}U(1)} \mathbf{E}\mathbf{B}U(1)$. The pullback of \begin{displaymath} \itexarray{ \mathbf{E}Vect &\to& \mathbf{E}Vect \\ \downarrow && \downarrow \\ Vect &\to& Vect \coprod \mathbf{E}\mathbf{B}U(1) } \end{displaymath} along our differential cocycle, i. e. the pullback of the top part of the diagram \begin{displaymath} \itexarray{ && \mathbf{E}Vect \\ && \downarrow & \searrow \\ \Sigma \times X & \to& Vect && \mathbf{E}Vect \\ \downarrow & \searrow && \searrow & \downarrow \\ \Sigma && \mathbf{\Pi}(\Sigma)\times \mathbf{\Pi}(X) &\to& \mathbf{E}\mathbf{B}U(1)\coprod_{\mathbf{B}U(1)} Vect \\ & \searrow & \downarrow \\ && \mathbf{\Pi}(\Sigma) } \end{displaymath} is over $X \times \Sigma$ the total space of the pullback of the underlying vector bundle $E$ on $X$ to $X \times \Sigma$, and over $\mathbf{\Pi}(X \times \Sigma)$ is a groupoid $E_{\mathbf{\Pi}}$ \begin{displaymath} \itexarray{ E &\to& E_{\mathbf{\Pi}} \\ \downarrow && \downarrow \\ X\times \Sigma &\to& \mathbf{\Pi}(X \times \Sigma) \\ \downarrow && \downarrow \\ \Sigma &\to& \mathbf{\Pi}(\Sigma) } \,. \end{displaymath} To see what $E \to E_{\mathbf{\Pi}}$ is like, first notice that we have a [[fibration sequence]] \begin{displaymath} \itexarray{ && && V \\ && && \downarrow \\ V &\to& E &\to & V//U(1) &\to& * \\ \downarrow && \downarrow && \downarrow && \downarrow \\ {*} &\stackrel{x}{\to} &X &\stackrel{g}{\to}& \mathbf{B}U(1) &\stackrel{\rho}{\to}& Vect } \end{displaymath} with the bottom right square a lax pullback and everything else [[homotopy pullback]]s. Here $V$ is the vector space that $\rho : \mathbf{B}U(1) \to Vect$ is a representation on (which for the [[electromagnetic field]] will be $\mathbb{C}$ itself). The groupoid $E_{\mathbf{\Pi}}$ has the following description: \begin{itemize}% \item its objects are triples $(x,\sigma, v)$, where $v \in E_{x}$ is a vector in the fiber of $E$ over $x$; \item its morphisms are triples $(x \stackrel{\gamma}{\to} y, \sigma \to \sigma', v)$ that go from $(x,\sigma,v)$ to $(y, \sigma', \exp(\int_0^1 |...|) \rho(\nabla(\gamma)))(v)$, i.e. from a vector in the fiber over the source to the corresponding vector in the fiber over the target, obtained by evaluating the action functional on the path. \end{itemize} To obtain from this a cocycle on $\Sigma$, we proceed as follows: we regard an interval $\sigma := [\sigma_{in}, \sigma_{out}] \in \mathbf{\Pi}(\Sigma)_1$ as a [[cospan]] \begin{displaymath} \itexarray{ \sigma_{in} &\to& \sigma &\leftarrow& \sigma_{out} \\ \downarrow && \downarrow && \downarrow \\ \sigma_{in} &\to& \mathbf{\Pi}(\sigma) &\leftarrow& \sigma_{out} \,, } \end{displaymath} where in the top row we regard these subsets of $\Sigma$ as discrete smooth sub-categories, and in the bottom row form the path $\infty$-groupoids. Then we take [[section]]s of $\itexarray{E &\to& E_{\mathbf{\Pi}}\\ \downarrow && \downarrow \\ \Sigma &\to& \mathbf{\Pi}(\Sigma)}$ to produce a [[span]] of sections \begin{displaymath} \left[ \itexarray{ \sigma_{in} \\ \downarrow \\ \sigma_{in} } \,, \itexarray{ E \\ \downarrow \\ E_{\mathbf{\Pi}} } \right]_\Sigma \leftarrow \left[ \itexarray{ \sigma \\ \downarrow \\ \mathbf{\Pi}(\sigma) } \,, \itexarray{ E \\ \downarrow \\ E_{\mathbf{\Pi}} } \right]_\Sigma \to \left[ \itexarray{ \sigma_{out} \\ \downarrow \\ \sigma_{out} } \,, \itexarray{ E \\ \downarrow \\ E_{\mathbf{\Pi}} } \right]_\Sigma \,. \end{displaymath} of smooth $\infty$-groupoids. Consider an $\infty$-groupoid \begin{displaymath} \Psi \to \left[ \itexarray{ \sigma_{in} \\ \downarrow \\ \sigma_{in} } \,, \itexarray{ E \\ \downarrow \\ E_{\mathbf{\Pi}} } \right]_\Sigma \end{displaymath} over the left foot. Under [[groupoid cardinality]], if $\Psi$ is tame, this corresponds to a collection of rational numbers over vectors in fibers of $E$. Under ``degrupoidification'' we may think of this as specifying a section $|\Psi| \in \Gamma(E)$. The above span is supposed to give us the propagation of this state along $\sigma$. To determine this, consider the special case where $\Psi$ is a ``delta-section'', $* \mapsto (x,\sigma_{in}, v)$ supported on a single vector $v$ in a single fiber $E_x$ over $x$. Then its pull-push through this span yields the $\infty$-groupoid over $E$, which over $(y,\sigma_{out},w)$ consists of the set of paths $\gamma : x \to y$ such that $w = \exp(\int...)\rho(\gamma)(v)$, i.e. such that $w$ is the vector obtained from applying the action to $v$ along this path. If everything were suitably finite, we could take cardinalities of the result and obtain the familiar path integral (sum) \begin{displaymath} \Psi'(y) = \int_{x \stackrel{\gamma}{\to} y} \exp( S_{kin}(\gamma)) tra_\nabla(\gamma) \Psi(x) \,. \end{displaymath} [[!redirects exercise in groupoidification -- the path integral]] [[!redirects An Exercise in Groupoidification]] \end{document}