\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{existential quantifier} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_logic}{In logic}\dotfill \pageref*{in_logic} \linebreak \noindent\hyperlink{in_type_theory}{In type theory}\dotfill \pageref*{in_type_theory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{categorical_semantics}{Categorical semantics}\dotfill \pageref*{categorical_semantics} \linebreak \noindent\hyperlink{frobenius_reciprocity}{Frobenius reciprocity}\dotfill \pageref*{frobenius_reciprocity} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[logic]], the \emph{existential quantifier} (or \emph{particular quantifier}) ``$\exists$'' is a [[quantifier]] used to express, given a [[predicate]] $\phi$ with a [[free variable]] $x$ of [[type]] $T$, the [[proposition]] \begin{displaymath} \exists\, x\colon T, \phi x \,, \end{displaymath} which is intended to be [[true]] if and only if $\phi a$ is true for at least one object $a$ of type $T$. Note that it is quite possible that $\exists\, x\colon T, \phi x$ may be [[proof|provable]] (in a given [[context]]) yet $\phi a$ cannot be proved for any [[term]] $a$ of type $T$ that can actually be constructed in that context. Therefore, we cannot define the quantifier by taking the idea literally and applying it to terms. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_logic}{}\subsubsection*{{In logic}}\label{in_logic} We work in a [[logic]] in which we are concerned with which [[propositions]] entail which propositions (in a given [[context]]); in particular, two propositions which entail each other are considered equivalent. Let $\Gamma$ be an arbitrary [[context]] and $T$ a [[type]] in $\Gamma$ so that $\Delta \coloneqq \Gamma, x\colon T$ is $\Gamma$ extended by a [[free variable]] $x$ of type $T$. We assume that we have a [[weakening rule]] that allows us to interpret any proposition $Q$ in $\Gamma$ as a proposition $Q[\hat{x}]$ in $\Delta$. Fix a proposition $P$ in $\Delta$, which we think of as a [[predicate]] in $\Gamma$ with the free variable $x$. Then the \textbf{existential quantification} of $P$ is any proposition $\exists\, x\colon T, P$ in $\Gamma$ such that, given any proposition $Q$ in $\Gamma$, we have \begin{itemize}% \item $\exists\, x\colon T, P \vdash_{\Gamma} Q$ if and only if $P \vdash_{\Gamma, x\colon T} Q[\hat{x}]$. \end{itemize} It is then a theorem that the existential quantification of $P$, if it exists, is unique. The existence is typically asserted as an axiom in a particular logic, but this may be also be deduced from other principles (as in the topos-theoretic discussion below). Often one makes the appearance of the free variable in $P$ explicit by thinking of $P$ as a [[propositional function]] and writing $P(x)$ instead; to go along with this one usually conflates $Q$ and $Q[\hat{x}]$. Then the rule appears as follows: \begin{itemize}% \item $\exists\, x\colon T, P(x) \vdash_{\Gamma} Q$ if and only if $P(x) \vdash_{\Gamma, x\colon T} Q$. \end{itemize} \hypertarget{in_type_theory}{}\subsubsection*{{In type theory}}\label{in_type_theory} In [[type theory]] under the identification of [[propositions as types]], the existential quantifier is given by the [[bracket type]] of the [[dependent sum type]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{categorical_semantics}{}\subsubsection*{{Categorical semantics}}\label{categorical_semantics} The [[categorical semantics]] of existential quantification is given by the [[n-truncated object of an (infinity,1)-category|(-1)-truncation]] of the [[dependent sum]]-construction along the [[projection]] morphism that projects out the [[free variable]] over which the existental quantifier quantifies. Notice that the [[categorical semantics]] of the [[context extension]] from $Q$ to $Q[\hat{x}]$ corresponds to [[base change]]/[[pullback]] along the [[product]] [[projection]] $\sigma(T) \times A \to A$, where $\sigma(T)$ is the interpretation of the type $T$, and $A$ is the interpretation of $\Gamma$. In other words, if a statement $Q$ read in context $\Gamma$ is interpreted as a [[subobject]] of $A$, then the statement $Q$ read in context $\Delta = \Gamma, x \colon T$ is interpreted by pulling back along the projection, obtaining a subobject of $\sigma(T) \times A$. (Often we have a class of [[display maps]] and require $f$ to be one of these.) Alternatively, any pullback functor $f^\ast\colon Set/A \to Set/B$ can be construed as pulling back along an object $X = (f \colon B \to A)$, i.e., along the unique map $!\colon X \to 1$ corresponding to an object $X$ in the slice $Set/A$, since we have the identification $Set/B \simeq (Set/A)/X$. Therefore in terms of the [[internal logic]] of a suitable category $\mathcal{E}$ (with sufficient pullbacks) \begin{itemize}% \item a [[type]] $X$ is given by an [[object]] $X \in \mathcal{E}$, \item the [[predicate]] $\phi$ is a [[(-1)-truncated]] object of the [[over-topos]] $\mathcal{E}/X$; \item a [[truth value]] is a [[(-1)-truncated]] object of $\mathcal{E}$ itself. \end{itemize} Existential quantification is essentially the restriction of the extra [[left adjoint]] of a canonical [[étale geometric morphism]] $X_\ast$, \begin{displaymath} (X_!\dashv X^*\dashv X_*):\mathcal{E}/X \stackrel{\overset{X_!}{\to}}{\stackrel{\overset{X^*}{\leftarrow}}{\underset{X_*}{\to}}} \mathcal{E} \,, \end{displaymath} where $X^\ast$ is the functor that takes an object $A$ to the [[product]] projection $\pi \colon X \times A \to X$, where $X_! = \Sigma_X$ is the [[dependent sum]] (i.e., forgetful functor taking $f \colon A \to X$ to $A$) that is left adjoint to $X^\ast$, and where $X_\ast = \Pi_X$ is the [[dependent product]] operation that is right adjoint to $X^\ast$. The dependent sum operation restricts to [[propositions]] by pre- and postcomposition with the [[truncated|truncation]] [[adjunctions]] \begin{displaymath} \tau_{\leq -1} \mathcal{E} \stackrel{\overset{\tau_{\leq -1}}{\leftarrow}}{\underset{}{\hookrightarrow}} \mathcal{E} \end{displaymath} to give existential quantification over the domain (or context) $X$: \begin{displaymath} \itexarray{ \mathcal{E}/X & \stackrel{\overset{X_!}{\to}}{\stackrel{\overset{X^*}{\leftarrow}}{\underset{X_*}{\to}}} & \mathcal{E} \\ {}^\mathllap{\tau_{\leq_{-1}}}\downarrow \uparrow && {}^\mathllap{\tau_{\leq_{-1}}}\downarrow \uparrow \\ \tau_{\leq_{-1}} \mathcal{E}/X & \stackrel{\overset{\exists}{\to}}{\stackrel{\overset{}{\leftarrow}}{\underset{\forall}{\to}}} & \tau_{\leq_{-1}} \mathcal{E} } \,. \end{displaymath} In other words, we obtain the existential quantifier by applying the [[dependent sum]], then $(-1)$-[[truncated|truncating]] the result. This is equivalent to constructing the [[image]] as a [[subobject]] of the [[codomain]]. Dually, the [[direct image functor]] $\forall$ (dependent product) expresses the [[universal quantifier]]. (In this case, it is somewhat simpler, since the dependent product automatically preserves $(-1)$-truncated objects; no additional truncation step is necessary.) The same makes verbatim sense also in the [[(∞,1)-logic]] of any [[(∞,1)-topos]]. This interpretation of existential quantification as the left adjoint to context extension is also used in the notion of \emph{[[hyperdoctrine]]}. \hypertarget{frobenius_reciprocity}{}\subsubsection*{{Frobenius reciprocity}}\label{frobenius_reciprocity} The extential quantifier and [[context extension]] is related via [[Frobenius reciprocity]]: if $\psi$ does not have $x$ as a [[free variable]] then \begin{displaymath} \exists_x (\phi \wedge \psi) \Leftrightarrow (\exists_x \phi) \wedge \psi \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Let $\mathcal{E} =$ [[Set]], let $X = \mathbb{N}$ be the set of [[natural number]]s and let $\phi \coloneqq 2\mathbb{N} \hookrightarrow \mathbb{N}$ be the [[subset]] of even natural numbers. This expresses the [[proposition]] $\phi(x) \coloneqq IsEven(x)$. Then the [[dependent sum]] \begin{displaymath} (\phi \in Set/{\mathbb{N}}) \mapsto (\sum_{x\colon X} \phi(x) \in Set) \end{displaymath} is simply the set $2 \mathbb{N} \in Set$ of even natural numbers. Since this is [[inhabited]], its [[truncated|(-1)-truncation]] is therefore the singleton set, hence the [[truth value]] \emph{[[true]]}. Indeed, there exists an even natural number! Notice that before the $(-1)$-truncation the operation remembers not just \emph{that} there is an even number, but it remembers ``all proofs that there is one'', namely every example of an even number. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[possibility]] \item [[universal quantifier]] \item [[elimination of quantifiers]] \item [[generalized quantifier]] \end{itemize} [[!include logic symbols -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The observation that [[substitution]] forms an [[adjoint pair]]/[[adjoint triple]] with the existantial/universal quantifiers is due to \begin{itemize}% \item [[William Lawvere]], \emph{[[Adjointness in Foundations]]}, (\href{http://www.emis.de/journals/TAC/reprints/articles/16/tr16abs.html}{TAC}), Dialectica 23 (1969), 281-296 \item [[William Lawvere]] \emph{Quantifiers and sheaves}, Actes, Congr\`e{}s intern, math., 1970. Tome 1, p. 329 \`a{} 334 (\href{http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0329.0334.ocr.pdf}{pdf}) \end{itemize} and further developed to the notion of [[hyperdoctrines]] in \begin{itemize}% \item [[William Lawvere]], \emph{Equality in hyperdoctrines and comprehension schema as an adjoint functor}, Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1-14. \end{itemize} [[!redirects existential quantifier]] [[!redirects existential quantifiers]] [[!redirects existential quantification]] [[!redirects existential quantifications]] [[!redirects particular quantifier]] [[!redirects particular quantifiers]] [[!redirects particular quantification]] [[!redirects particular quantifications]] [[!redirects existence]] \end{document}