\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{experimental alternative definition of adjunction} This page is a result of the following question originally asked at [[adjunction]]: [[Eric]]: Is it true that given categories $C$ and $D$ that functors $F:C\to D$ and $G:D\to C$ form an adjunction if the following diagram commutes for all morphisms $f:x\to y$ in $C$? \begin{displaymath} \itexarray{ x &\stackrel{f}{\to}& y \\ \uparrow && \uparrow \\ G\circ F(y) &\stackrel{G\circ F(f)}{\leftarrow}& G\circ F(x) } \end{displaymath} If so, is that an ``if and only if'' so that you can define adjunctions this way? If so, this would, in my opinion, be the most digestible way to define adjunctions for ``scientists and engineers''. \hypertarget{contents}{}\section*{{Contents}}\label{contents} This page is an informal/speculative discussion of an alternative (yet hopefully equivalent) definition of [[adjunction]]. \noindent\hyperlink{attempt_2}{Attempt \#2}\dotfill \pageref*{attempt_2} \linebreak \noindent\hyperlink{definition_experimental}{Definition (Experimental)}\dotfill \pageref*{definition_experimental} \linebreak \noindent\hyperlink{attempt_1}{Attempt \#1}\dotfill \pageref*{attempt_1} \linebreak \noindent\hyperlink{definition_experimental_2}{Definition (Experimental)}\dotfill \pageref*{definition_experimental_2} \linebreak \noindent\hyperlink{response_from_toby}{Response from Toby}\dotfill \pageref*{response_from_toby} \linebreak \hypertarget{attempt_2}{}\subsection*{{Attempt \#2}}\label{attempt_2} \hypertarget{definition_experimental}{}\subsubsection*{{Definition (Experimental)}}\label{definition_experimental} \hypertarget{attempt_1}{}\subsection*{{Attempt \#1}}\label{attempt_1} \hypertarget{definition_experimental_2}{}\subsubsection*{{Definition (Experimental)}}\label{definition_experimental_2} \begin{quote}% Note the \textbf{Crash!} below. This definition is not correct. I think something like this should work, but I need to think about it. \end{quote} Given [[categories]] $C$ and $D$, a pair of [[functors]] $F:C\to D$ and $G:D\to C$ form an \textbf{adjunction} if for every morphism $f:x\to y$ in $C$, there are component morphisms \begin{displaymath} \eta_{y x}: G\circ F(x)\to y \end{displaymath} and \begin{displaymath} \eta_{x y}: G\circ F(y)\to x \end{displaymath} such that the following diagram commutes \begin{displaymath} \itexarray{ x &\stackrel{f}{\to}& y \\ \uparrow && \uparrow \\ G\circ F(y) &\stackrel{G\circ F(f)}{\leftarrow}& G\circ F(x) }. \end{displaymath} Note that since $G\circ F:C\to C$ is an [[endofunctor]], there are component morphisms \begin{displaymath} \alpha_x: x\to G\circ F(x) \end{displaymath} and \begin{displaymath} \alpha_y: y\to G\circ F(y) \end{displaymath} such that the following diagram also commutes: \begin{displaymath} \itexarray{ x &\stackrel{f}{\to}& y \\ \downarrow && \downarrow \\ G\circ F(x) &\stackrel{G\circ F(f)}{\rightarrow}& G\circ F(y) }. \end{displaymath} Putting the two commuting squares together, we have a commuting square with commuting (upward) diagonals giving rise to additional commuting triangles. These commuting diagrams give rise to the following relations: \begin{itemize}% \item $\eta_{y x}\circ \alpha_x = f$ \item $\alpha_y\circ\eta_{y x} = G\circ F(f)$ \item $[G\circ F(f)]\circ\alpha_x = \alpha_y\circ f$ \item $\eta_{x y}\circ [G\circ F(f)]\circ\alpha_x = 1_x$ \item $f\circ\eta_{x y}\circ\alpha_y = 1_y.$ \end{itemize} Note: I'm not sure if these are independent or not (need to count how many independent equations we get!), but it is instructive to note: \begin{displaymath} \eta_{x y}\circ \alpha_y\circ\eta_{y x}\circ\alpha_x = 1_x \end{displaymath} and \begin{displaymath} \eta_{y x}\circ\alpha_x\circ\eta_{x y}\circ \alpha_y = 1_y \end{displaymath} which means \begin{displaymath} \eta_{y x}\circ\alpha_x = \left(\eta_{x y}\circ \alpha_y\right)^{-1}. \end{displaymath} \textbf{CRASH!} I'll need to check, but unless I made some algebra mistake, this last statement might kill the whole idea. Since \begin{displaymath} f = \eta_{y x}\circ\alpha_x, \end{displaymath} then the above statement says $f$ has an inverse. \hypertarget{response_from_toby}{}\subsubsection*{{Response from Toby}}\label{response_from_toby} You need to say more than just that \emph{there are} morphisms that make these diagrams commute. Whether $F \vdash G$ is an adjunction is not actually a property but a structure; we need to say \emph{how} they are an adjunction. That is, you have to pick the family of morphism $G(F(x)) \to y$ in advance. But then you can make it work, I believe \ldots{} although I'm pretty sure that you need more commutative diagrams than the one that you've drawn. That is, an \textbf{adjunction} $\eta$ from $F$ to $G$ consists of a family of maps $\eta_f\colon G(F(x)) \to y$, one for each morphism $f\colon x \to y$, such that \begin{itemize}% \item a bunch of diagrams commute. \end{itemize} I have to think about whether this works and what diagrams you need. [[Eric]]: Thanks Toby. I would be surprised if it were this simple, but I drew some pictures based on the diagram in Goldblatt, and I think this works. [[Eric]]: Note, I had some typos in the original version of the diagram, but it should be correct now. Or it least it now matches the diagram on my paper :) \begin{quote}% I'm pretty sure that you need more commutative diagrams than the one that you've drawn. \end{quote} We get another commuting square from the fact that $G\circ F$ is an endofunctor. I've now drawn that above. When you put the two together, it gives you a bunch of additional commuting triangles, but everything follows from the one first simple diagram. [[Eric]]: Hi Toby (and anyone else who may stop by). Note the \textbf{Crash!} above. The definition cannot be correct as stated. I probably won't give up though. I think instead of saying the diagram commutes, I need to say something about ``commuting up to a 2-morphism'' or ``there is a 2-morphism such that'' blah blah. \end{document}