\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{explicit mathematics} \hypertarget{explicit_mathematics}{}\section*{{Explicit mathematics}}\label{explicit_mathematics} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_basic_theory_of_operations_and_numbers}{The basic theory of operations and numbers}\dotfill \pageref*{the_basic_theory_of_operations_and_numbers} \linebreak \noindent\hyperlink{elementary_comprehension}{Elementary comprehension}\dotfill \pageref*{elementary_comprehension} \linebreak \noindent\hyperlink{join_and_inductive_generation}{Join and inductive generation}\dotfill \pageref*{join_and_inductive_generation} \linebreak \noindent\hyperlink{universes_in_explicit_mathematics}{Universes in explicit mathematics}\dotfill \pageref*{universes_in_explicit_mathematics} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Explicit mathematics} is a programme initiated by [[Solomon Feferman]] which is related to [[constructive mathematics]]. It is also a range of foundational logical systems based on the [[logic of partial terms]]. Starting from a first-order logic of partial terms axiomatizing [[combinatory algebra]], a second sort of \emph{classes} is added. Sometimes, the alternative names \emph{classifications} or \emph{types} are used. The classes of explicit mathematics are not like the classes of [[set theory]], but also not like types of [[type theory]]. They are like the former in that they represent certain collections of the underlying first-order model, but they are like the latter in that they have \emph{names} that can be operated on to construct new ones. The systems come in flavors with either intuitionistic or [[classical logic]]. On benefit is that they allow for smooth axiomatization of strong notions of [[universes]], see below. The primary systems are called $T_0$ (the classical variant) and $T_0^i$ (the intuitionistic variant). In the 1980s there was a proof assistant and program extraction tool called PX based on a version of $T_0$ relative to the Lisp programming language. \hypertarget{the_basic_theory_of_operations_and_numbers}{}\subsection*{{The basic theory of operations and numbers}}\label{the_basic_theory_of_operations_and_numbers} The first-order part of the systems treat an applicative universe in the sense of combinatory algebra. It includes constants $\mathrm{k}$ and $\mathrm{s}$ (combinators), $\mathrm{p}$, $\mathrm{p}_0$, and $\mathrm{p}_1$ (pairing and projection), $0$, $\mathrm{s}_N$, and $\mathrm{p}_N$ (zero, successor, and predecessor), and $\mathrm{d}_N$ (definition by cases on the natural numbers), and possibly further applicative constants. There is one binary function symbol ${\cdot}$ for application (usual just indicated by juxtaposition), one unary relation symbol $\downarrow$ for being defined, one unary relation symbol $\mathrm{N}$ for natural numbers, as well the binary equality relation. In the logic of partial terms, we use the usual abbreviation $s \simeq t \leftrightarrow ({s\downarrow} \wedge {t\downarrow} \to s=t)$. The basic axioms for the operations and natural numbers are: \begin{enumerate}% \item $\mathrm{k} a b = a$, \item $\mathrm{s} a b \downarrow \wedge \mathrm{s} a b c \simeq a c(b c)$, \item $\mathrm{p}_0(a,b)=a \wedge \mathrm{p}_1(a,b) = b$, \item $0\in N \wedge (\forall x\in N)(\mathrm{s}_N x \in N)$, \item $(\forall x\in N)(\mathrm{s}_N x \ne 0 \wedge \mathrm{p}_N(\mathrm{s}_N x)=x)$, \item $(\forall x\in N)(x\ne0 \to \mathrm{s}_N(\mathrm{p}_N x) = x)$, \item $a\in N \wedge b\in N \wedge a=b \to \mathrm{d}_N u v a b = u$, \item $a\in N \wedge b\in N \wedge a\ne b \to \mathrm{d}_N u v a b = v$. \end{enumerate} From the first two axioms we get lambda-definability and a fixed-point combinator. To these axioms we add the scheme of induction over the natural numbers to obtain the theory $BON + (\mathrm{L}{-}Ind_N)$. This is proof-theoretically equivalent to first-order Peano arithmetic, $PA$, via interpretations both ways. We can interpret $BON + (\mathrm{L}{-}Ind_N)$ in $PA$ by coding operations as indices for recursive functions using Kleene's $T$ and $U$ predicates. \hypertarget{elementary_comprehension}{}\subsection*{{Elementary comprehension}}\label{elementary_comprehension} When we go from the purely applicative theory to the theories of classes and names, we add a second sort (for classes) as well as several new constants, a binary relation symbol $\in$ (for membership) and a binary relation symbol for names $\Re$, where $\Re(s, U)$ means that $s$ is a name for the class $U$. We use the abbreviation $\Re(s) :\leftrightarrow \exists U \Re(s,U)$, indicating that $s$ is a name. The basic axioms regarding classes and names state that every class has a name, that there are no homonyms, and that $\Re$ respects extensional equality. The names of classes corresponding to elementary comprehension are generated from $nat$ (natural numbers) and $id$ (the equality relation) using $co$ (complements), $int$ (intersections), $dom$ (domains), and $inv$ (inverse images). These are for the classical systems. The intuitionistic systems are slightly different. Todo: look this up Using the abbreviation $s\dot\in t :\leftrightarrow \exists U(\Re(t,U) \wedge s\in U)$, the axioms are: \begin{enumerate}% \item $\Re(nat) \wedge \forall x(x \dot\in nat \leftrightarrow N(x))$, \item $\Re(id) \wedge \forall x(x \dot\in id \leftrightarrow \exists y(x = (y,y)))$, \item $\Re(a) \to \Re(co(a)) \wedge \forall x(x \dot\in co(a) \leftrightarrow \neg x\dot\in a)$, \item $\Re(a) \wedge \Re(b) \to \Re(int(a,b)) \wedge \forall x(x \dot\in int(a,b) \leftrightarrow x \dot\in a \wedge x \dot\in b)$, \item $\Re(a) \to \Re(dom(a)) \wedge \forall x(x \dot\in dom(a) \leftrightarrow \exists y((x,y) \dot\in a))$, \item $\Re(a) \to \Re(inv(a,f)) \wedge \forall x(x \dot\in inv(a,f) \leftrightarrow f x \dot\in a)$. \end{enumerate} Again we add some induction over the natural numbers to obtain theories $EC + (\mathrm{C}{-}Ind_N)$ (induction axiom for classes) and $EC + (\mathrm{L}{-}Ind_N)$ (induction schema for all formulas). These correspond proof-theoretically to the subsystems of second-order arithmetic $ACA_0$ and $ACA$, respectively. \hypertarget{join_and_inductive_generation}{}\subsection*{{Join and inductive generation}}\label{join_and_inductive_generation} The \emph{join} of classes gives disjoint unions of classes, and thus corresponds to the $\Sigma$-types of type theory. The inductive generation operation provides accesible parts of classes coding binary relations. todo: the axioms for join and inductive generation. The theory $T_0$ has elementary comprehension, join, inductive generation, and full induction over the natural numbers. It has the same proof-theoretic strength as [[CZF]] plus $REA$, the [[regular extension axiom]]. Further equivalences are listed at [[ordinal analysis]]. \hypertarget{universes_in_explicit_mathematics}{}\subsection*{{Universes in explicit mathematics}}\label{universes_in_explicit_mathematics} todo \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \href{https://math.stanford.edu/~feferman/papers/DraftIntroFEM.pdf}{Introduction (draft)} \item Solomon Feferman, \href{http://home.inf.unibe.ch/~ltg/em_bibliography/feferman13.pdf}{How a Little Bit goes a Long Way: Predicative Foundations of Analysis}, notes prepared 1977-1981 with a new introduction from 2013. \item \href{http://www.ltg.unibe.ch/research/Foundations%20of%20Explicit%20Mathematics}{Foundations of explicit mathematics} \item \href{http://home.inf.unibe.ch/~ltg/em_bibliography/}{Bibliography of explicit mathematics} \item Reinhard Kahle and Anton Setzer, \href{http://www.cs.swan.ac.uk/~csetzer/articles/kahleSetzerExtendedPredicativeMahloPohlersFestschrift.pdf}{An extended predicative definition of the Mahlo universe}, In: Ways of Proof Theory, pp. 315–340. Ontos Mathematical Logic, vol. 2, 2010. \item Susumu Hayashi and Hiroshi Nakano, \href{https://dl.acm.org/citation.cfm?id=62010}{PX: a computational logic}, MIT Press, 1988. \end{itemize} \end{document}