\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exponentiable topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{topos_theory_2}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory_2} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{remarks_on_duality}{Remarks on duality}\dotfill \pageref*{remarks_on_duality} \linebreak \noindent\hyperlink{ramifications}{Ramifications}\dotfill \pageref*{ramifications} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \textbf{exponentiable topos} is a generalization of the notion of an exponentiable [[locale]] and can be viewed as a (topological) ``space'' $X$ that behaves well with respect to the construction of mapping spaces $Y^X$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[Grothendieck topos]] $\mathcal{E}$ is called \emph{exponentiable} (in the [[2-category]] of Grothendieck toposes $GrTop$) if the 2-functor ${}_{-}\times\mathcal{E}$ has a right 2-adjoint $(_{-})^\mathcal{E}$. \end{defn} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item More concretely, $\mathcal{E}$ is exponentiable if there exists a functor $(_{-})^\mathcal{E}$ such that for all toposes $\mathcal{F},\mathcal{G}$ $Hom(\mathcal{F}\times\mathcal{E},\mathcal{G})$ is (naturally) equivalent as a category to $Hom(\mathcal{F},\mathcal{G}^\mathcal{E})$. \item The concept generalizes to [[higher topos theory]] (cf. \hyperlink{AJ18}{Anel-Lejay 2018}, \hyperlink{Lurie18}{Lurie 2018}). \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Interestingly, in the category of locales exponentiability of a locale $X$ hinges on the existence of the single exponential $S^X$ where $S$ is the [[Sierpinski space]]: $Y^X$ exists for all $Y$ iff $S^X$ exists. In $GrTop$ the [[classifying topos for the theory of objects|object classifier]] $\mathcal{S}[\mathbb{O}]$ takes over the role of the Sierpinski space and we have the following \begin{prop} \label{}\hypertarget{}{} A [[Grothendieck topos]] $\mathcal{E}$ is exponentiable iff the [[exponential object|exponential]] $\mathcal{S}[\mathbb{O}]^\mathcal{E}$ exists. \end{prop} This result is due to Johnstone-Joyal (\hyperlink{JJ82}{1982}, p.282) and occurs as theorem 4.3.1 of Johnstone (\hyperlink{J02}{2002, vol.1 p.433}). The following theorem pursues this analogy and generalizes a result of [[Martin Hyland]] on locales (\hyperlink{Hyland81}{1981}). \begin{prop} \label{}\hypertarget{}{} A [[Grothendieck topos]] $\mathcal{E}$ is an exponentiable object in the 2-category of Grothendieck toposes and [[geometric morphisms]] iff $\mathcal{E}$ is a [[continuous category]]. \end{prop} This result is due to Johnstone-Joyal (\hyperlink{JJ82}{1982}) and occurs as theorem 4.4.5 of Johnstone (\hyperlink{J02}{2002, p.748}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Since [[locally finitely presentable categories]] are [[continuous category|continuous]] and [[coherent topos|coherent toposes]] are locally finitely presentable (cf. Johnstone (\hyperlink{J02}{2002, p.915})) it follows that \emph{coherent toposes are exponentiable}. This can be viewed as an avatar of the fact that (locally) compact topological spaces behave well with respect to mapping spaces. \item By the same reasoning all functor categories $Set^{\mathcal{C}}$ for $\mathcal{C}$ a [[small category]] are exponentiable since they are [[locally finitely presentable category|locally finitely presentable]]. This includes in particular all [[presheaf toposes]] on small categories. \end{itemize} \hypertarget{remarks_on_duality}{}\subsection*{{Remarks on duality}}\label{remarks_on_duality} It is worthwhile to muse a bit about $\mathcal{S}[\mathbb{O}]^\mathcal{E}$: First of at all, it is [[injective topos|injective]] since $\mathcal{S}[\mathbb{O}]$ is injective and $(_-)^\mathcal{E}$ preserves inclusions. This and the various universal properties of the toposes involved imply that an exponentiable topos \begin{displaymath} \mathcal{E}\cong Hom(\mathcal{E},\mathcal{S}[\mathbb{O}])\cong Hom(\mathcal{S}\times\mathcal{E},\mathcal{S}[\mathbb{O}])\cong Hom(\mathcal{S},\mathcal{S}[\mathbb{O}]^\mathcal{E}) \end{displaymath} is (up to equivalence) the \emph{category of points of an injective topos}. Now consider an arbitrary topos $\mathcal{E}$ classifying a geometric theory $\mathbb{T}$. Then from the [[geometric theory\#FunctorialDefinition|functorial perspective on logic]] the 2-functor $\mathbb{T}^*:GrTop^{op}\to CAT$ assigning to $\mathcal{F}$ the category of models $\mathbb{T}^*(\mathcal{F}):=\mathcal{F}\times\mathcal{E}=\mathcal{F}\times\mathcal{S}[\mathbb{T}]$ is called the \textbf{dual theory} of $\mathbb{T}$. It need not be geometric i.e. have a [[classifying topos]] but when it is, $\mathbb{T}$ being called \emph{dualizable} in that case, the following \begin{displaymath} \mathbb{T}^*(\mathcal{F})=\mathcal{F}\times\mathcal{E}\cong Hom(\mathcal{F}\times\mathcal{E},\mathcal{S}[\mathbb{O}])\cong Hom(\mathcal{F},\mathcal{S}[\mathbb{O}]^\mathcal{E}) \end{displaymath} shows that $\mathcal{S}[\mathbb{O}]^\mathcal{E}$ has precisely the properties required for $\mathcal{S}[\mathbb{T}^*]$. In other words, $\mathbb{T}^*$ is geometric (and classified by $\mathcal{S}[\mathbb{O}]^\mathcal{E}$) precisely iff $\mathcal{E}=\mathcal{S}[\mathbb{T}]$ is exponentiable! \hypertarget{ramifications}{}\subsection*{{Ramifications}}\label{ramifications} The notion of a [[tiny object]] in a cartesian closed category suggests the following \begin{defn} \label{}\hypertarget{}{} An exponentiable Grothendieck topos $\mathcal{E}$ is called \emph{tiny} (or \emph{infinitesimal}) if the 2-functor $(_{-})^\mathcal{E}$ has a right 2-adjoint $(_{-})_\mathcal{E}$. \end{defn} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[exponential object]] \item [[continuous category]] \item [[reflexive object]] \item [[injective topos]] \item [[ind-object]] \item [[classifying topos for the theory of objects]] \item [[convenient category of spaces]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Mathieu Anel]], Damien Lejay, \emph{Exponentiable Higher Toposes} , arXiv:1802.10425 (2018). (\href{https://arxiv.org/abs/1802.10425}{abstract}) \item [[Andreas Blass]], \emph{The interaction of category theory and set theory} , Cont. Math. \textbf{30} (1984) pp.5-29. (\href{http://www.math.lsa.umich.edu/~ablass/interact.pdf}{draft}) \item [[Martin Hyland]], \emph{Function spaces in the category of locales} , Springer LNM \textbf{871} (1981) pp.264-281. \item [[Peter Johnstone]], [[André Joyal]], \emph{Continuous categories and exponentiable toposes} , JPAA \textbf{25} (1982) pp.255-296. \item [[Peter Johnstone]], \emph{Sketches of an Elephant vols. 1\&2} , CUP 2002. (sections B4.3 pp.432-438, C4.4 pp.745-754) \item [[Jacob Lurie]], \emph{Spectral Algebraic Geometry} , ms. Harvard University 2018. (section 21.1.6) \item [[Susan Niefield]], \emph{Exponentiable Morphisms: posets, spaces, locales and Grothendieck toposes} , TAC \textbf{8} (2001) pp.16-32. (\href{http://www.tac.mta.ca/tac/volumes/8/n2/8-02abs.html}{abstract}) \end{itemize} [[!redirects Exponentiable topos]] [[!redirects exponential topos]] \end{document}