\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exponential map} \begin{quote}% For the concept in [[category theory]] see at \emph{[[exponential object]]}. \end{quote} \vspace{.5em} \hrule \vspace{.5em} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{arithmetic}{}\paragraph*{{Arithmetic}}\label{arithmetic} [[!include arithmetic geometry - contents]] \hypertarget{exponential_maps}{}\section*{{Exponential maps}}\label{exponential_maps} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{with_respect_to_an_affine_connection}{With respect to an affine connection}\dotfill \pageref*{with_respect_to_an_affine_connection} \linebreak \noindent\hyperlink{via_geodesics}{Via geodesics}\dotfill \pageref*{via_geodesics} \linebreak \noindent\hyperlink{exp_of_Lie_groups}{In Lie groups}\dotfill \pageref*{exp_of_Lie_groups} \linebreak \noindent\hyperlink{logarithms}{Logarithms}\dotfill \pageref*{logarithms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The exponential [[function]] of classical [[analysis]] given by the [[series]], \begin{equation} \exp x \coloneqq \sum_{i = 0}^{\infty} \frac{x^i}{i!} , \label{series}\end{equation} is the solution of the [[differential equation]] \begin{displaymath} f' = f \end{displaymath} with initial value $f(0) = 1$. This classical function is defined on the [[real line]] (or the [[complex plane]]). To generalise it to other [[manifolds]], we need two things: \begin{itemize}% \item by its nature, the argument of the function should be a [[tangent vector]]; so in the classical function $\mathbb{R} \to \mathbb{R}$, the [[source]] $\mathbb{R}$ is really the [[tangent space]] to the [[target]] $\mathbb{R}$ at the point $\exp 0 = 1$. \item We need a [[covariant derivative]] to tell us what $f'$ means. \end{itemize} So in the end we have, for any [[point]] $p$ on a [[differentiable manifold]] $M$ with an [[affine connection]] $\Del$, a map $\exp_p\colon T_p M \to M$, which is defined at least on a [[neighbourhood]] of $0$ in the [[tangent space]] $T_p M$. Note that $p$ here comes from the initial value $\exp_p 0 = p$; we usually take $p = 1$ when we work in a [[Lie group]], but otherwise we are really generalising the classical exponential function $x \mapsto p \exp x$; every solution to $f' = f$ takes this form. Classically, there are some other functions called `exponential'; given any nonzero real (or complex) number $b$, the map $x \mapsto b^x$ (or even $x \mapsto p\, b^x$) is also an exponential map. Using the [[natural logarithm]], we can define $b^x$ in terms of the natural exponential map $\exp$: \begin{displaymath} b^x \coloneqq \exp (x \ln b) . \end{displaymath} So while $b$ is traditionally called the `base', it is really the number $\ln b$ that matters, or even better the operation of multiplication by $\ln b$. This operation is an [[endomorphism]] of the real line (or complex plane), and every such endomorphism takes this form for some nonzero $b$ (and some branch of the natural logarithm, in the complex case). So we see that this generalised exponential map is simply the [[composite]] of the natural exponential map after a linear endomorphism. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} See also at \emph{[[flow of a vector field]]}. \hypertarget{with_respect_to_an_affine_connection}{}\subsubsection*{{With respect to an affine connection}}\label{with_respect_to_an_affine_connection} Let $M$ be a [[differentiable manifold]], let $\Del$ be an [[affine connection]] on $M$, and let $p$ be a [[point]] in $M$. Then by the general theory of [[differential equations]], there is a unique [[maximal partial function|maximally]] defined [[partial function]] $\exp_p$ from the [[tangent space]] $T_p M$ to $M$ such that: \begin{itemize}% \item $\Del \exp_p = \exp_p$ and \item $\exp_p(0) = 1$. \end{itemize} This function is the \textbf{natural exponential map on $M$ at $p$ relative to $\Del$}. We have $\exp_p\colon U \to M$, where $U$ is some [[neighbourhood]] of $0$ in $T_p M$. If $M$ is [[complete manifold|complete]] (relative to $\Del$), then $U$ will be all of $T_p M$. Let $M$ be a [[Riemannian manifold]] (or a [[pseudo-Riemannian manifold]]) and let $p$ be a point in $M$. Then $M$ may be equipped with the [[Levi-Civita connection]] $\Del_{lc}$, so we define the \textbf{natural Riemannian exponential map on $M$ at $p$} to be the natural exponential map on $M$ at $p$ relative to $\Del_{lc}$. Given any [[endomorphism]] $\phi\colon T_p M \to T_p M$, we can also consider the \textbf{exponential map on $M$ at $p$ relative to $\Del$ with logarithmic base $\phi$}, which is simply $x \mapsto \exp_p \phi(x)$. We say `logarithmic base' since a classical exponential function with base $b$ corresponds to an exponential function whose logarithmic base is multiplication by $\ln b$. \hypertarget{via_geodesics}{}\subsubsection*{{Via geodesics}}\label{via_geodesics} Recall that a [[geodesic]] is a [[curve]] on a manifold whose [[velocity]] is constant (as measured along that curve relative to a given affine connection). Working na\"i{}vely, we may write \begin{displaymath} \gamma' = v , \end{displaymath} pretend that this is a differential equation for a function $\gamma\colon \mathbb{R} \to \mathbb{R}$, and take the solution \begin{displaymath} \gamma(t) = p \exp t x , \end{displaymath} where $p$ is given by the initial value $\gamma(0) = p$. We recognise this as being, morally, $\exp_p t x$. This suggests (although we need more work for a proof) the following result: Let $M$ be a [[differentiable manifold]], let $\Del$ be an [[affine connection]] on $M$, and let $p$ be a [[point]] in $M$. Given a [[tangent vector]] $x$ at $p$, there is a unique [[maximal geodesic]] $\gamma$ on $M$ tangent to $x$ at $p$. If $\gamma(1)$ is defined (which it will be whenever $M$ is [[complete manifold|complete]] and may be in any case), we have $exp_p x = \gamma(1)$. In any case, we have $\exp_p (t x) = \gamma(t)$ for sufficiently small $t$. \hypertarget{exp_of_Lie_groups}{}\subsection*{{In Lie groups}}\label{exp_of_Lie_groups} Note: this section is under repair. The classical exponential function $\exp \colon \mathbb{R} \to \mathbb{R}^*$ or $\exp \colon \mathbb{C} \to \mathbb{C}^*$ satisfies the fundamental property: \begin{prop} \label{}\hypertarget{}{} The function $\exp \colon \mathbb{C} \to \mathbb{C}^*$ is a homomorphism taking addition to multiplication: \begin{displaymath} \exp(x + y) = \exp(x) \cdot \exp(y) \end{displaymath} \end{prop} \begin{proof} A number of proofs may be given. One rests on the combinatorial [[binomial theorem|binomial identity]] \begin{displaymath} (x + y)^n = \sum_{j + k = n} \frac{n!}{j! k!} x^j y^k \end{displaymath} (which crucially depends on the fact that multiplication is [[commutative monoid|commutative]]), whereupon \begin{displaymath} \itexarray{ \sum_{n \geq 0} \frac{(x+y)^n}{n!} & = & \sum_{n \geq 0} \sum_{j + k = n} \frac1{j!} \frac1{k!} x^j y^k \\ & = & (\sum_{j \geq 0} \frac{x^j}{j!}) \cdot (\sum_{k \geq 0} \frac{y^k}{k!}) \\ & = & \exp(x) \cdot \exp(y) } \end{displaymath} An alternative proof begins with the observation that $f = \exp$ is the solution to the system $f' = f$, $f(0) = 1$. For each $y$, the function $g_1 \colon x \mapsto f(x) f(y)$ is a solution to the system $g' = g$, $g(0) = f(y)$, as is the function $g_2 \colon x \mapsto f(x + y)$. Then by uniqueness of solutions to ordinary differential equations (over connected domains; see, e.g., \href{http://en.wikipedia.org/wiki/Picard%E2%80%93Lindel%C3%B6f_theorem}{here}), $g_1 = g_2$, i.e., $f(x + y) = f(x)f(y)$ for all $x, y$.\footnote{A previous edit offered even more detail: ``An alternative proof begins with the premise that each solution of the ordinary differential equation $g' = 0$ is locally constant. Suppose $c$ is a complex number. As $\exp' = \exp$, we find that $(\exp(x) \exp(c - x))' = \exp(x) \exp(c - x) + \exp(x) (-\exp(c-x)) = 0$. Hence, by the premise and the connectedness of the domain of $\exp$ (either ${\mathbb{R}}$ or ${\mathbb{C}}$), we obtain $\exp(x)\exp(c - x) = \exp(0)\exp(c)$. The initial condition $\exp(0) = 1$ then yields $\exp(x)\exp(c - x) = \exp(c)$. The result follows by setting $c = x + y$.''} \end{proof} Let $M$ be [[Lie group]] and let $\mathfrak{g}$ be its [[Lie algebra]] $T_1 M$, the tangent space to the [[identity element]] $1$. Then $M$ may be equipped with the canonical left-invariant connection $\Del_l$ or the canonical right-invariant connection $\Del_r$. It turns out that the natural Riemannian exponential maps on $M$ at $1$ relative to $\Del_l$ and $\Del_r$ are the same; we define this to be the \textbf{natural Lie exponential map on $M$ at the identity}, denoted simply $\exp$. Several nice properties follow: \begin{itemize}% \item $\exp$ is defined on all of $\mathfrak{g}$. \item $\exp \colon \mathfrak{g} \to G$ is a [[smooth map]]. \item If $\rho \colon \mathbb{R} \to \mathfrak{g}$ is a smooth homomorphism from the additive group $\mathbb{R}$ (i.e., if $\rho$ is an $\mathbb{R}$-linear map, uniquely determined by specifying $X = \rho(1)$), then $\exp \circ \rho_X \colon \mathbb{R} \to G$ is a smooth homomorphism. \item For $X, Y \in \mathfrak{g}$, if $[X, Y] = 0$, then the restriction of $\exp \colon \mathfrak{g} \to G$ to the subspace spanned by $X$ and $Y$ is a smooth homomorphism to $G$. In particular, $\exp \colon \mathfrak{g} \to G$ is a homomorphism if $\mathfrak{g}$ is abelian (e.g., if $G$ is a commutative Lie group). \item $\exp$ is [[surjection|surjective]] (a [[regular epimorphism]]) if $G$ is [[connected space|connected]] and [[compact space|compact]] (and also in some other situations, such as the classical cases where $G$ is $]0,\infty[$ or $\mathbb{C} \setminus \{0\}$). See \href{https://terrytao.wordpress.com/2011/06/25/two-small-facts-about-lie-groups/}{this post} by Terence Tao, Proposition 1; see also the first comment which indicates an alternative proof based on the fact that [[maximal tori]] in $G$ are all conjugate to one another. Note also that the exponential map might not be surjective if the compactness assumption is dropped, as in the case of $G = SL_2(\mathbb{R})$ or $SL_2(\mathbb{C})$, both of which are connected; see \href{http://math.stackexchange.com/questions/643216/non-surjectivity-of-the-exponential-map-to-sl2-mathbbc}{here} for instance. \item If $G$ is [[compact space|compact]], then it may be equipped with a [[Riemannian metric]] that is both left and right invariant (see Tao's post linked in the previous remark); then the Lie exponential map is the same as the Riemannian exponential map at $1$. \item If $G$ is a [[matrix Lie group]], then $\exp$ is given by the classical series formula \eqref{series}. \end{itemize} (to be expanded on) \hypertarget{logarithms}{}\subsection*{{Logarithms}}\label{logarithms} A \textbf{[[logarithm]]} is a [[local section]] of an exponential map. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pane wave]] \item [[flow of a vector field]] \item [[Euler number]], [[e]] \item [[logarithm]] \item [[Euler's formula]] \item [[exponential exact sequence]] \item [[Hamiltonian flow]] \item [[exponential modality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item wikipedia \href{https://en.wikipedia.org/wiki/Exponential_map_%28Lie_theory%29}{exponential map (Lie theory)}, \href{https://en.wikipedia.org/wiki/Derivative_of_the_exponential_map}{derivative of the exponential map}, \href{https://en.wikipedia.org/wiki/Exponential_map_(Riemannian_geometry}{exponential map (Riemannian geometry)}) \item Springer [[eom]]: \href{https://www.encyclopediaofmath.org/index.php/Exponential_mapping}{exponential mapping} \end{itemize} An extensive treatment for the general exponential map for an affine connection, for exponential map for Riemannian manifolds and the one for Lie groups is \begin{itemize}% \item Sigurdur Helgason, Differential geometry, Lie groups and symmetric spaces \end{itemize} Specifically for Lie groups, a different detailed treatment of the exponential map is in \begin{itemize}% \item [[M M Postnikov]], \emph{Lie groups and Lie algebras}, Geometry V \end{itemize} Some nice historical notes are in \begin{itemize}% \item Wilfried Schmid, \emph{Poincare and Lie groups}, Bull. Amer. Math. Soc. 6:2, 1982 \href{http://www.ams.org/journals/bull/1982-06-02/S0273-0979-1982-14972-2/S0273-0979-1982-14972-2.pdf}{pdf} \end{itemize} [[!redirects exponential map]] [[!redirects exponential maps]] [[!redirects exponential function]] [[!redirects exponential functions]] [[!redirects exponent]] [[!redirects exponents]] [[!redirects exponentiation]] [[!redirects exponential]] [[!redirects exponentials]] [[!redirects exponential series]] \end{document}