\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{extended geometric quantization of 2d Chern-Simons theory} \begin{quote}% under construction, notes related to material that appears in detail elsewhere, see the \hyperlink{References}{References}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{chernsimons_theory}{}\paragraph*{{$\infty$-Chern-Simons theory}}\label{chernsimons_theory} [[!include infinity-Chern-Simons theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{local_2d_prequantum_boundary_field_theory_and_kkquantization}{Local 2d prequantum boundary field theory and KK-Quantization}\dotfill \pageref*{local_2d_prequantum_boundary_field_theory_and_kkquantization} \linebreak \noindent\hyperlink{1_local_2d_prequantum_field_theory}{\textbf{1)} Local 2d prequantum field theory}\dotfill \pageref*{1_local_2d_prequantum_field_theory} \linebreak \noindent\hyperlink{2_local_boundary_2d_prequantum_field_theory}{\textbf{2)} Local boundary 2d prequantum field theory}\dotfill \pageref*{2_local_boundary_2d_prequantum_field_theory} \linebreak \noindent\hyperlink{QuantizationInKKTheory}{\textbf{3)} Quantization in KK-Theory}\dotfill \pageref*{QuantizationInKKTheory} \linebreak \noindent\hyperlink{2d_poisson_chernsimons_theory__idea}{2d Poisson Chern-Simons theory -- Idea}\dotfill \pageref*{2d_poisson_chernsimons_theory__idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{identifying_symplectic_groupoids_as_2plectic_groupoids}{Identifying ``symplectic groupoids'' as 2-plectic groupoids}\dotfill \pageref*{identifying_symplectic_groupoids_as_2plectic_groupoids} \linebreak \noindent\hyperlink{summary_and_survey}{Summary and survey}\dotfill \pageref*{summary_and_survey} \linebreak \noindent\hyperlink{general_theory}{General theory}\dotfill \pageref*{general_theory} \linebreak \noindent\hyperlink{the_setup}{The setup}\dotfill \pageref*{the_setup} \linebreak \noindent\hyperlink{moduli_stack_of_fields}{Moduli stack of fields}\dotfill \pageref*{moduli_stack_of_fields} \linebreak \noindent\hyperlink{ThePhaseSpaceStack}{The Phase space stack}\dotfill \pageref*{ThePhaseSpaceStack} \linebreak \noindent\hyperlink{DBranes}{D-branes}\dotfill \pageref*{DBranes} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{moduli_of_2d_cs_fields_and_symplectic_groupoids}{Moduli of 2d CS fields and symplectic groupoids}\dotfill \pageref*{moduli_of_2d_cs_fields_and_symplectic_groupoids} \linebreak \noindent\hyperlink{prequantum_2states}{Prequantum 2-states}\dotfill \pageref*{prequantum_2states} \linebreak \noindent\hyperlink{polarizations_and_branes}{Polarizations and branes}\dotfill \pageref*{polarizations_and_branes} \linebreak \noindent\hyperlink{quantum_2states}{Quantum 2-states}\dotfill \pageref*{quantum_2states} \linebreak \noindent\hyperlink{symplectic_case}{Symplectic case}\dotfill \pageref*{symplectic_case} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{local_2d_prequantum_boundary_field_theory_and_kkquantization}{}\subsection*{{Local 2d prequantum boundary field theory and KK-Quantization}}\label{local_2d_prequantum_boundary_field_theory_and_kkquantization} \hypertarget{1_local_2d_prequantum_field_theory}{}\subsubsection*{{\textbf{1)} Local 2d prequantum field theory}}\label{1_local_2d_prequantum_field_theory} ambient [[(∞,1)-topos]] $\mathbf{H} =$ [[Smooth∞Grpd]]. We use in there mostly just the [[full sub-(∞,1)-category]] \begin{displaymath} DiffStack \hookrightarrow SmoothGrpd \hookrightarrow Smooth \infty Grpd \end{displaymath} of [[differentiable stacks]], i.e. the full subcategory on object that are presented by [[Lie groupoids]] but as [[coefficients]] at least we also need [[smooth infinity-groupoid|smooth 2-groupoids]]. In particular, write $\mathbf{B}^2 U(1)$ for the [[smooth 2-groupoid]] which is the [[circle 3-group]]. For $\mathbf{Fields} \in \mathbf{H}$ a [[moduli stack]] of [[field (physics)|fields]], we say that a map \begin{displaymath} \itexarray{ \mathbf{Fields} \\ \downarrow^{\mathrlap{exp(i S)}} \\ \mathbf{B}^2 U(1) } \end{displaymath} is a [[local action functional]]. (More generally we consider [[smooth super ∞-groupoids]] and replace $\mathbf{B}^2 U(1)$ by the moduli stack of [[super 2-line bundles]].) Since this is necessarily a [[dualizable objects]] in the [[(∞,2)-category]] of [[(∞,n)-category of correspondences|correspondences]] $Corr_2(\mathbf{H}, \mathbf{B}^2 U(1))$ it induces by the [[cobordism theorem]] a \textbf{[[local prequantum field theory]]} given by a [[monoidal (∞,n)-functor|monoidal (∞,2)-functor]] \begin{displaymath} \itexarray{ && Corr_2(\mathbf{H},\mathbf{B}^2 U(1)) &\to& Corr_2(\mathbf{H}, KU Mod) \\ & {}^{\mathllap{\exp(i S)}}\nearrow& \downarrow \\ Bord_n &\stackrel{\mathbf{Fields}}{\to}& Corr_2(\mathbf{H}) } \end{displaymath} Here we postcomposed with [[geometric realization]] \begin{displaymath} \mathbf{B}^2 U(1) \to {\vert \mathbf{B}^2 U(1)\vert} \simeq K(\mathbb{Z},3) \to B gl_1(KU) \to KU Mod \,. \end{displaymath} \hypertarget{2_local_boundary_2d_prequantum_field_theory}{}\subsubsection*{{\textbf{2)} Local boundary 2d prequantum field theory}}\label{2_local_boundary_2d_prequantum_field_theory} Considering one marked boundary condition we have [[boundary field theory]] defined in addition to the data of $\exp(i S) \colon \mathbf{Fields} \to KU Mod$ by a morphisms in $Corr_2(\mathbf{H}, KU Mod)$ which as a [[diagram]] in $\mathbf{H}$ is of the form \begin{displaymath} \itexarray{ && Q \\ & \swarrow && \searrow^{\mathrlap{i}} \\ \ast && \swArrow_{\mathrlap{\xi}} && \mathbf{Fields} \\ & {}_{\mathllap{\mathbb{I}}}\searrow && \swarrow_{\mathrlap{\exp(i S)}} } \,. \end{displaymath} This is the \emph{[[boundary condition]]}. \hypertarget{QuantizationInKKTheory}{}\subsubsection*{{\textbf{3)} Quantization in KK-Theory}}\label{QuantizationInKKTheory} We [[quantization|quantize]] by interpreting the [[path integral]] as [[push-forward in generalized cohomology]] in [[complex topological K-theory]] $KU$. Specifically we quantize a correspondence as above by applying the following procedure \begin{enumerate}% \item Decompose the correspondence explicitly as \begin{displaymath} \itexarray{ && Q \\ & \swarrow && \searrow^{\mathrlap{i}} \\ \ast &\swArrow_{\mathrlap{\xi}}& \downarrow^{\mathrlap{i^\ast \chi}} && \mathbf{Fields} \\ & {}_{\mathllap{\mathbb{I}}}\searrow && \swarrow_{\mathrlap{\chi}} \\ && KU Mod } \,. \end{displaymath} \item Form [[twisted groupoid convolution algebras]] to produce a [[co-span]] of [[Hilbert bimodules]] \begin{displaymath} \mathbb{C} \stackrel{\xi}{\to} C_{i^\ast \chi}(Q) \stackrel{i^\ast}{\leftarrow} C_\chi(X) \,. \end{displaymath} Regard this as a cospan in [[KK-theory]]. \item Assume that the middle and right objects are [[dualizable objects]]. Choose a map in [[KK-theory]] \begin{displaymath} Th(Q) \colon \left(C_{i^\ast \chi}\left(Q\right)\right) \to \left(C_{i^\ast \chi}\left(Q\right)\right)^{\vee} \end{displaymath} to the dual [[C\emph{-algebra]]. (If this is an KK-[[equivalence]] then this is the [[Thom isomorphism]] in this context.)} \item Consider the [[dual morphism]] to $i^\ast$, to be denoted \begin{displaymath} i_! \;\colon\; \left(C_{i^\ast}\left(Q\right)\right)^{\vee} \to \left(C_\chi\left(X\right)\right)^\vee \end{displaymath} and then turn the above cospan into the following consecutive composite in [[KK-theory]] \begin{displaymath} i_! Th\left(Q_{i^\ast \chi}\right) \xi \colon \mathbb{C} \stackrel{\xi}{\to} C_{i^\ast \chi}(Q) \stackrel{Th}{\to} (C_{i^\ast \chi}(Q))^\vee \stackrel{i_!}{\to} (C_{\chi}(X))^\vee \,. \end{displaymath} This we regard as the quantization of the boundary correspondence. \end{enumerate} (\ldots{}) \hypertarget{2d_poisson_chernsimons_theory__idea}{}\subsection*{{2d Poisson Chern-Simons theory -- Idea}}\label{2d_poisson_chernsimons_theory__idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} We discuss aspects of the [[extended geometric quantization]] of one of the simplest and yet interesting examples of [[schreiber:∞-Chern-Simons theory]], namely [[2d Chern-Simons theory]] and here specifically the case induced by a binary and non-degenerate [[invariant polynomial]], namely the [[Lie integration|Lie integrated]] version of the [[Poisson sigma-model]]. It turns out that several aspects of the [[extended geometric quantization]] of this 2d [[theory (physics)|theory]] are known in the literature already, albeit in disguise: the [[2-plectic geometry|2-plectic]] [[moduli stack]] of [[field (physics)|fields]] is equivalently what in the literature is known as a \emph{[[symplectic groupoid]]} and its [[higher geometric quantization]] is essentially what is known as the \emph{[[geometric quantization of symplectic groupoids]]}. The suggestion that there should be such a relation is contained already in (\href{symplectic%20groupoid#CattaneoFelder01}{Cattaneo-Felder 01}), but at the time of that writing the [[geometric quantization of symplectic groupoids]] had not been performed yet. To some extent in the following we review the traditional [[geometric quantization of symplectic groupoids]] while showing at the same time how its ingredients are (more) naturally interpreted in [[higher symplectic geometry]]. This makes quantization of symplectic groupoids a good test case against which to check notions of [[higher geometric quantization]]. Specifically, we discuss what should be the first nontrivial case of the Chern-Simons-type \emph{[[holographic principle]]} realized in [[higher geometric quantization]]: The [[moduli stack]] of the [[2d Chern-Simons theory]] is the [[Lie integration]] of the [[Poisson Lie algebroid]] associated to a [[Poisson manifold]]. The latter we may think of as defining a [[quantum mechanical system]], hence a $(2-1) = 1$-dimensional [[quantum field theory]]. The higher geometric quantization of the 2-d theory yields a [[2-vector space]] [[space of states|of quantum 2-states]] (assigned to the point n codimension 2). Under the identification of [[2-vector spaces]] with [[categories of modules]] over an [[associative algebra]], this space of quantum 2-states identifies (the [[Morita equivalence]]-class of) an algebra. Suitably re-interpreting traditional results about the quantization of symplectic groupods shows that this algebra is the [[strict deformation quantization]] of that [[Poisson manifold]]. Notice that at the level of just infinitesimal (``formal'') [[deformation quantization]] a similar [[holographic principle|holographic]] relation between quantization of a Poisson manifold and of its associated 2d [[sigma-model]] QFT has famously been shown by [[Alberto Cattaneo]] and [[Giovanni Felder]] to underly [[Kontsevich]]`s construction of deformation quantization (see at \emph{[[Poisson sigma-model]]}). We suggest that the discussion here provides the refinement of this relation to [[strict deformation quantization]]. All of this should be a blueprint for an analogous situaton in one dimension higher, where the analogous procedure should reproduce the famous holographic quantization of the [[2d Wess-Zumino-Witten theory]] in terms of that of a [[3d Chern-Simons theory]]. \hypertarget{identifying_symplectic_groupoids_as_2plectic_groupoids}{}\subsubsection*{{Identifying ``symplectic groupoids'' as 2-plectic groupoids}}\label{identifying_symplectic_groupoids_as_2plectic_groupoids} We briefly indicate the basis for re-interpreting traditional [[symplectic groupoid]]-theory in terms of [[higher symplectic geometry]]. The identification of the traditional notion of ``[[symplectic groupoid]]'' as really a [[2-plectic geometry|2-plectic]] structure is evident as soon as one translates the traditional definition of a [[symplectic groupoid]] to more intrinsic language of [[smooth infinity-groupoid|higher differential geometry]]. We discuss this in detail below, but in brief it works as follows: A [[symplectic groupoid]] $(\mathbf{X},\omega)$ is traditionally defined to be a [[Lie groupoid]] $\mathbf{X}$ which is equipped with a (non-degenerate) [[differential 2-form]] $\omega \in \Omega^2(\mathbf{X}_1)$ on its [[smooth manifold]] of [[morphisms]], such that it is annihilated by the [[de Rham differential]] as well as by the operator $\delta$ that sums the [[pullback of differential forms|pullback]] of $\omega$ to the space $\mathbf{X}_2$ of composable morphisms along the [[source]] and [[target]] maps and minus that along the [[composition]] map. But together this just means that regarded as a triple $(0, \omega, 0) \in \underset{k = 0,1,2}{\oplus} \Omega^{3-k}(\mathbf{X}_k)$ the symplectic form is a [[cocycle]] in the [[simplicial de Rham complex]] over the [[simplicial manifold]] which is the [[nerve]] of the Lie groupoid. And this finally means fully intrinsically that $\omega$ is a degree-3 [[cocycle]] in the \href{cohesive+%28infinity,1%29-topos+--+structures#deRhamCohomology}{intrinsic de Rham cohomology} \href{smooth+infinity-groupoid+--+structures#deRhamCoefficientsInBnU1}{of smooth ∞-groupoids} over $\mathbf{X}$, which we denote by \begin{displaymath} \omega \;\colon\; \mathbf{X} \to \flat_{dR} \mathbf{B}^3 U(1) \,. \end{displaymath} This simple observation shows that [[symplectic groupoids]], which in traditional literature are treated as a topic in [[symplectic geometry]], are really objects in [[higher symplectic geometry]], namely in [[2-plectic geometry]]. More specifically, if $(X,\pi)$ is a [[Poisson manifold]], there is canonically associated with it a [[Lie algebroid]] $\mathfrak{P}$, the \emph{[[Poisson Lie algebroid]]}. This is an example of a [[symplectic Lie n-algebroid]] and as such it carries a canonical binary [[invariant polynomial]]. Together this serves as the [[target space]] and [[background gauge field]] of what is called the [[Poisson sigma-model]]. But moreover, the [[Lie integration]] of this data is the [[extended Lagrangian]] of an [[schreiber:∞-Chern-Simons theory]], namely a map \begin{displaymath} \mathbf{L} \;\colon\; \tau_1\exp(\mathfrak{P})_{conn} \to \mathbf{B}^2 (\mathbb{R}/\Gamma)_{conn} \end{displaymath} from the [[moduli stack]] of [[field (physics)|fields]] of the [[2d Chern-Simons theory]] to that of [[circle 2-bundles with connection]]. If we [[concretify]] the moduli stack by forgetting the connection data here and just consider the underlying [[instanton sectors]], then this is precisely the symplectic groupoid data above \begin{displaymath} \itexarray{ \tau_1\exp(\mathfrak{P})_{conn} &\stackrel{\mathbf{L}}{\to}& \mathbf{B}^2 (\mathbb{R}/\Gamma)_{conn} \\ {}^{\mathllap{concretify}}\downarrow && \downarrow \\ \mathbf{X} &\stackrel{\omega}{\to}& \flat_{dR} \mathbf{B}^3 U(1) } \,. \end{displaymath} It is in this way that we may identify the [[symplectic groupoid]] of a Poisson manifold \begin{displaymath} \mathbf{X} \simeq \tau_1 \exp(\mathfrak{P}) \end{displaymath} as the [[moduli stack]] of the [[extended prequantum field theory|extended prequantum]] [[2d Chern-Simons theory]] which refines the [[Poisson sigma-model]]. Hence we identify the [[geometric quantization]] of $(\mathbf{X}, \omega)$ as the extended geometric quantization of the [[2d Chern-Simons theory]]. But traditional literature shows (and this was motivation for introducing [[symplectic groupoids]] in the first place) that this encodes the [[quantization]] of the [[Poisson manifold]] $(X, \pi)$ itself, regarded as a [[quantum mechanical system]]. This is the traditional topic of \emph{[[geometric quantization of symplectic groupoids]]}. Taken together this says: the [[extended geometric quantization]] of the [[extended prequantum field theory|extended prequantum]] [[Poisson sigma-model]] computes the ordinary [[geometric quantization]] of the underlying Poisson manifold. This statement we recognize as a geometric quantization analog of a famous relation in [[algebraic deformation quantization]]. As discussed there, the construction by [[Kontsevich]] of the algebraic deformation quantization of any Poisson manifold was identified by [[Cattaneo]] and [[Felder]] as a limiting case of the [[n-point function|3-point function]] in the [[perturbation theory|perturbative quantization]] of the corresponding 2d Poisson $\sigma$-model. These relations to traditional theory we use in the following to explore aspects of the [[extended geometric quantization]] of [[2d Chern-Simons theory]]. \hypertarget{summary_and_survey}{}\subsubsection*{{Summary and survey}}\label{summary_and_survey} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{general_theory}{}\subsection*{{General theory}}\label{general_theory} We use the general tools for formulating notions in [[physics]] in terms of [[higher differential geometry]] as discussed at \emph{[[geometry of physics]]}. Here we just collect some of the main ingredients needed below. \begin{defn} \label{}\hypertarget{}{} We write \begin{displaymath} DL \;\colon\; [CartSp^{op}, Ch_\bullet(Ab)] \stackrel{\simeq}{\to} [CartSp^{op}, Ab^{\Delta^{op}}] \stackrel{forget}{\to} [CartSp^{op}, KanCplx] \stackrel{}{\to} L_{lhe} [CartSp^{op}, KanCplx] \simeq Smooth\infty Grpd \end{displaymath} where the first equivalence is the [[Dold-Kan correspondence]] and the last map is the map to the [[simplicial localization]]. \end{defn} \begin{defn} \label{}\hypertarget{}{} For $k,n \in \mathbb{N}$, $k \leq n$ we write \begin{displaymath} \mathbf{B}^n U(1)_{conn^k} \coloneqq DK\left[ \underline{U}(1) \stackrel{\mathbf{d}}{\to} \Omega^1 \stackrel{\mathbf{d}}{\to} \cdots \stackrel{\mathbf{d}}{\to} \Omega^k \stackrel{}{\to} 0 \stackrel{}{\to} \cdots \stackrel{}{\to} 0 \right] \end{displaymath} with $\Omega^k$ in degree $(n-k)$ (hence with $(n-k)$ vanishing entries on the right). In particular \begin{itemize}% \item $\mathbf{B}^n U(1) \simeq \mathbf{B}^n U(1)_{conn^0}$ \item $\mathbf{B}^n U(1)_{conn} \simeq \mathbf{B}^n U(1)_{conn^n}$. \end{itemize} \end{defn} \begin{example} \label{}\hypertarget{}{} For $n,k \in \mathbb{N}$, $k \lt n$ we have \begin{enumerate}% \item $\Omega (\mathbf{B} U(1)_{conn}) \simeq \flat \mathbf{B}^{n-1}$ \item $\Omega (\mathbf{B}^n U(1)_{conn}^k) \simeq \mathbf{B}^{n-1} U(1)_{conn}^k$. \end{enumerate} \end{example} (\ldots{}) \begin{displaymath} \itexarray{ field space && \tau_n \exp(\mathfrak{a})_{conn} &\to& \mathbf{B}^n U(1)_{conn} \\ && \downarrow && \downarrow \\ delooped phase space && \tau_n \exp(\mathfrak{a}) &\to& \mathbf{B}^n U(1)_{conn^{n-1}} } \end{displaymath} \begin{displaymath} \itexarray{ C_0 &\to& * \\ \downarrow && \downarrow \\ \tau_n \exp(\mathfrak{a}) &\to& \mathbf{B}^n U(1)_{conn^{n-1}} \\ \uparrow && \uparrow \\ C_1 &\to& * } \end{displaymath} under [[homotopy fiber product]] this yields the phase space prequantum bundle \begin{displaymath} Phase(C_0, C_1) \to \mathbf{B}^{n-1}U(1)_{conn} \,. \end{displaymath} (\ldots{}) \hypertarget{the_setup}{}\subsection*{{The setup}}\label{the_setup} Let $(X, \pi)$ be a [[Poisson manifold]], which we tend to think of as defining a \emph{[[quantum mechanical system]]}. This canonically induces the structure of [[Lie algebroid]] over $X$, the \emph{[[Poisson Lie algebroid]]} $(\mathfrak{P}, \mathbf{\omega})$ over $X$. This is a [[symplectic Lie n-algebroid|symplectic Lie algebroid]], with graded symplectic form (binary [[invariant polynomial]]) $\mathbf{\omega}$ which is in [[transgression]] with the Poisson tensor $\pi$, regarded as a [[Lie algebroid cohomology|Lie algebroid cocycle]]. The transgression is witnessed by a [[Chern-Simons element]] $cs_\pi$. \hypertarget{moduli_stack_of_fields}{}\subsubsection*{{Moduli stack of fields}}\label{moduli_stack_of_fields} By the general construction of [[schreiber:infinity-Chern-Simons theory]] this means that there is a universal differential characteristic map \begin{displaymath} \mathbf{L} \;\colon\; \exp(\mathfrak{P})_{conn} \to \mathbf{B}^2 \mathbb{R}_{conn} \end{displaymath} and its truncation ([[Lie integration]]) \begin{displaymath} \mathbf{L} \;\colon\; \tau_1 \exp(\mathfrak{P})_{conn} \to \mathbf{B}^2 (\mathbb{R}/\Gamma)_{conn} \,. \end{displaymath} Here $\tau_1 \exp(\mathfrak{P})_{conn}$ is the [[smooth groupoid|smooth]] [[moduli stack]] of fields of the 2d Poisson-Chern-Simons theory and $\mathbf{H}$ is the [[extended Lagrangian]] of a [[2d Chern-Simons theory]] ([[schreiber:Higher Chern-Weil Derivation of AKSZ Sigma-Models|FRS]]). Infinitesimally this yields the [[Poisson sigma-model]]. We discuss here the [[higher geometric quantization]] of this [[theory (physics)|theory]] defined by $\mathbf{L}$. \hypertarget{ThePhaseSpaceStack}{}\subsubsection*{{The Phase space stack}}\label{ThePhaseSpaceStack} There is the canonical universal forgetful map \begin{displaymath} \tau_1 \exp(\mathfrak{P})_{conn} \to \tau_1 \exp(\mathfrak{P}) \end{displaymath} which forgets the conection data of fields and only retains their ``[[instanton sector]]''. The [[smooth groupoid]] $\tau_1 \exp(\mathfrak{P})$ is the [[symplectic groupoid]] which is the [[Lie integration]] of the [[Poisson Lie algebroid]] $\mathfrak{P}$. (In the traditional literature this is called the symplectic groupoid only if it happens to be representable by a [[Lie groupoid]], hence if $\mathfrak{P}$ is integrable in the traditional sense of Lie groupoid theory.) Notice that this is equivalently [[differential concretification]] over the point: $\tau_1 \exp(\mathfrak{P})$ may be understood as the [[smooth groupoid|smooth]] [[moduli stack]] of $\mathfrak{P}$-[[Lie algebroid valued differential forms|valued]] forms on the point. But moreover, we may think of $\tau_1 \exp(\mathfrak{P})$ as being the [[phase space]] of the [[open string]] 2d Poisson-Chern-Simons [[sigma-model]] for the space-filling [[D-brane]] boundary condition: in this interpretation the [[objects]] of $\tau_1 \exp(\mathfrak{P})$ are the endpoints of open strings, the [[morphisms]] are solutions to the [[Euler-Lagrange equations]] of motion along an interval (an initial spatial slice of string) and [[composition]] is string concatenation. This is the point of view suggested in (\href{symplectic%20groupoid#CattaneoFelder01}{Cattaneo-Felder 01}), there argued for by the observation that the space of [[morphisms]] of $\tau_1 \exp(\mathfrak{P})$ is naturally the [[symplectic reduction]] of (in our language) of that of $\tau_1 \exp(\mathfrak{P})$ for the [[moment map]] that characterizes the [[equations of motion]] and [[gauge symmetries]] of the [[Poisson sigma-model]]. \hypertarget{DBranes}{}\subsubsection*{{D-branes}}\label{DBranes} Let $\mathfrak{C}_0, \mathfrak{C}_1 \hookrightarrow \mathfrak{P}$ be two [[Lagrangian dg-submanifold|Lagrangian]] sub-[[Lie algebroids]] of the given [[Poisson Lie algebroid]]. These correspond to [[coisotropic submanifolds]] of the underlying [[Poisson manifold]]. Accoring to (\href{coisotropic+submanifold#CattaneoFelder03}{Cattaneo-Felder 03}) we are two think of these as being two [[D-brane]] inclusions for the [[open string]] Poisson-Chern-Simons model. Their [[Lie integration]] induces two Lagrangian sub-groupoids of the [[symplectic groupoid]] \begin{displaymath} tau_1 \exp(\mathfrak{C}_0) \to \tau_1 \exp(\mathfrak{P}) \leftarrow \tau_1 \exp(\mathfrak{C}_1) \,. \end{displaymath} This means that the [[moduli stack]] of [[open strings]] with endpoints restricted to these two [[D-branes]] is the [[homotopy fiber product]] of [[smooth groupoids]] \begin{displaymath} \itexarray{ & & \mathbf{Fields}_{\mathfrak{C}_0, \mathfrak{C}_1} \\ & \swarrow && \searrow \\ \tau_1 \exp(\mathfrak{C}_0) && && \tau_1 \exp(\mathfrak{C}_1) \\ & \searrow && \swarrow \\ && \tau_1 \exp(\mathfrak{P}) } \,. \end{displaymath} One finds that this [[homotopy pullback]] is equivalently the [[symplectic reduction]] considered in (\href{coisotropic+submanifold#CattaneoFelder03}{Cattaneo-Felder 03, page 6, 7}). That for space-filling branes $\mathfrak{C}_0, \mathfrak{C}_1 \coloneqq \mathfrak{P}$ one recovers the original moduli stack \begin{displaymath} \mathbf{Fields}_{\mathfrak{P}, \mathfrak{P}} \simeq \tau_1 \exp(\mathfrak{P}) \end{displaymath} is just the statement that the homotopy pullback of an equivalence is an equivalence. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} \hypertarget{moduli_of_2d_cs_fields_and_symplectic_groupoids}{}\subsubsection*{{Moduli of 2d CS fields and symplectic groupoids}}\label{moduli_of_2d_cs_fields_and_symplectic_groupoids} We discuss how the [[moduli stack]] of the [[2d Chern-Simons theory]] obtained by [[Lie integration]] of the [[Poisson sigma-model]] is a [[symplectic groupoid]]. Let $\mathfrak{P}$ be the [[Poisson Lie algebroid]] corresponding to a [[Poisson manifold]] that comes from a [[symplectic manifold]] $(X,\omega)$. The [[symplectic groupoid]] associated to this is (by the discussion there) supposed to be the [[fundamental groupoid]] $\Pi_1(X)$ of $X$ equipped on its space of morphisms with the differential form $p_1^* \omega - p_2^* \omega$, where $p_1,p_2$ are the two endpoint projections from paths in $X$ to $X$. We demonstrate in the following how this is indeed the result of applying the [[∞-Chern-Weil homomorphism]] to this situation. For simplicity we shall start with the simple situation where $(X,\omega)$ has a global [[Darboux coordinate chart]] $\{x^i\}$. Write $\{\omega_{i j}\}$ for the components of the [[symplectic form]] in these coordinates, and $\{\omega^{i j}\}$ for the components of the [[inverse]]. Then the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{P})$ is generated from $\{x^i\}$ in degree 0 and $\{\partial_i\}$ in degree 1, with differential given by \begin{displaymath} d_{CE} x^i = - \omega^{i j} \partial_j \end{displaymath} \begin{displaymath} d_{CE} \partial_i = \frac{\partial \pi^{j k}}{\partial x^i} \partial_j \wedge \partial_k = 0 \,. \end{displaymath} The differential in the corresponding [[Weil algebra]] is hence \begin{displaymath} d_{W} x^i = - \omega^{i j} \partial_j + \mathbf{d}x^i \end{displaymath} \begin{displaymath} d_{W} \partial_i = \mathbf{d} \partial_i \,. \end{displaymath} By the discussion at [[Poisson Lie algebroid]], the symplectic [[invariant polynomial]] is \begin{displaymath} \mathbf{\omega} = \mathbf{d} x^i \wedge \mathbf{d} \partial_i \in W(\mathfrak{P}) \,. \end{displaymath} Clearly it is useful to introduce a new basis of generators with \begin{displaymath} \partial^i := -\omega^{i j} \partial_j \,. \end{displaymath} In this new basis we have a manifest isomorphism \begin{displaymath} CE(\mathfrak{P}) = CE(\mathfrak{T}X) \end{displaymath} with the [[Chevalley-Eilenberg algebra]] of the [[tangent Lie algebroid]] of $X$. Therefore the [[Lie integration]] of $\mathfrak{P}$ is the [[fundamental groupoid]] of $X$, which, since we have assumed global Darboux oordinates and hence [[contractible]] $X$, is just the [[pair groupoid]]: \begin{displaymath} \tau_1 \exp(\mathfrak{P}) = \Pi_1(X) = (X \times X \stackrel{\overset{p_2}{\to}}{\underset{p_1}{\to}} X) \,. \end{displaymath} It remains to show that the symplectic form on $\mathfrak{P}$ makes this a [[symplectic groupoid]]. Notice that in the new basis the invariant polynomial reads \begin{displaymath} \begin{aligned} \mathbf{\omega} &= - \omega_{i j} \mathbf{d}x^i \wedge \mathbf{d} \partial^j \\ & = \mathbf{d}( \omega_{i j} \partial^i \wedge \mathbf{d}x^j) \end{aligned} \end{displaymath} and that we may regard this as a morphism of $L_\infty$-algebroids \begin{displaymath} \mathbf{\omega} : \mathfrak{T}\mathfrak{P} \to \mathfrak{T}b^3 \mathbb{R} \end{displaymath} The corresponding [[infinity-Chern-Weil theory|infinity-Chern-Weil homomorphism]] that we need to compute is given by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \exp(\mathfrak{P})_{diff} &\stackrel{\exp(\mathbf{\omega})}{\to}& \exp(b \mathbb{R})_{dR} &\stackrel{\int_{\Delta^\bullet}}{\to}& \mathbf{\flat}_{dR}\mathbf{B}^3 \mathbb{R} \\ \downarrow^{\mathrlap{\simeq}} \\ \exp(\mathfrak{P}) } \,. \end{displaymath} Over a test space $U$ in degree 1 an element in $\exp(\mathfrak{P})_{diff}$ is a pair $(X^i, \eta^i)$ \begin{displaymath} X^i \in C^\infty(U \times \Delta^1) \end{displaymath} \begin{displaymath} \eta^i \in \Omega^1_{vert}(U \times \Delta^1) \end{displaymath} subject to the verticality constraint, which says that along $\Delta^1$ we have \begin{displaymath} d_{\Delta^1} X^i + \eta^i_{\Delta^1} = 0 \,. \end{displaymath} The vertical morphism $\exp(\mathfrak{P})_{diff} \to \exp(\mathfrak{P})$ has in fact a [[section]] whose image is given by those pairs for which $\eta^i$ has no leg along $U$. We therefore find the desired form on $\exp(\mathfrak{P})$ by evaluating the top morphism on pairs of this form. Such a pair is taken by the top morphism to \begin{displaymath} \begin{aligned} (X^i, \eta^j) & \mapsto \int_{\Delta^1} \omega_{i j} F_{X^i} \wedge F_{\partial^j} \\ & = \int_{\Delta^1} \omega_{i j} (d_{dR} X^i + \eta^i) \wedge d_{dR} \eta^j \in \Omega^3(U) \end{aligned} \,. \end{displaymath} Using the above verticality constraint and the condition that $\eta^i$ has no leg along $U$, this becomes \begin{displaymath} \cdots = \int_{\Delta^1} \omega_{i j} d_U X^i \wedge d_U d_{\Delta^1} X^j \,. \end{displaymath} By the [[Stokes theorem]] the integration over $\Delta^1$ yields \begin{displaymath} \cdots = \omega_{i j} d_{dR} x^i \wedge \eta^j|_{0} - \omega_{i j} d_{dR} x^i \wedge \eta^j|_{1} \,. \end{displaymath} This completes the proof. \begin{displaymath} \itexarray{ X &\to& * \\ \downarrow && \downarrow \\ \tau_1 \exp(\mathfrak{P}) &\stackrel{\omega}{\to}& \flat_{dR} \mathbf{B}^3 U(1) } \,. \end{displaymath} \hypertarget{prequantum_2states}{}\subsubsection*{{Prequantum 2-states}}\label{prequantum_2states} Generally, given a [[prequantum line 2-bundle]] the corresponding (local) [[prequantum n-states]] are the (local) [[sections]] of this [[line 2-bundle]], and these in turn are equivalently the [[twisted unitary bundles]] (maybe best known for the [[WZW model]] where these are the [[Chan-Paton gauge fields]]). These 2-sections/twisted bundles form a [[2-vector space]] of prequantum 2-states. This is equivalently a [[category of modules]] over some [[associative algebra]], well defined up to [[Morita equivalence]]. A canonical way of constructing this algebra is as follows: present the [[line 2-bundle]] as a [[bundle 2-gerbe]], hence as a multiplicative [[line bundle]] over the morphisms of a [[Lie groupoid]], then the algebra is the [[groupoid algebra]] (see there for details) of sections of this line bundle. A module over this is manifestly a [[bundle gerbe module]], which in turn is equivalently a unitary bundle twisted by the line 2-bundle. More in detail: Let $\mathbf{X}$ be a smooth groupoid and $\mathbf{X} \to \mathbf{B}^2 U(1)$ the map modulating a [[circle 2-group]]-[[principal 2-bundle]] $P \to \mathbf{X}$. Let $(\coprod_n \mathbf{B}U(n))//\mathbf{B}U(1) \to \mathbf{B}^2 U(1)$ the canonical [[infinity-action|2-representation]], the sections of the [[associated infinity-bundle|associated 2-bundle]] are unitary [[twisted bundles]] equivariant on $\mathbf{X}$. If we present the 2-bundle by a [[bundle gerbe]] exhibited as a multiplicative [[line bundle]] over the space of morphisms $\mathbf{X}_1$, then there is the [[groupoid algebra|convolution algabra]] $\mathcal{A}$ of sections of this line bundle. Twisted unitary vector bundles are equivalently projective [[modules]] over this algebra. This means that under the identification \begin{displaymath} \phi \colon Alg_k \stackrel{\simeq}{\to} 2 Vect_k \end{displaymath} of the [[2-category]] of [[2-vector spaces]] with that of [[algebras]], [[bimodules]] and intertwiners (see at \emph{[[n-vector space]]}), the convolution algebra $\mathcal{A}$ \emph{is} the 2-vector space of sections \begin{displaymath} \phi\left(\mathcal{A}\right) \simeq \Gamma_{\mathbf{X}}\left(P \times_{\mathbf{B}U\left(1\right)} \coprod_n \mathbf{B}U\left(n\right) \right) \,. \end{displaymath} \hypertarget{polarizations_and_branes}{}\subsubsection*{{Polarizations and branes}}\label{polarizations_and_branes} The full generalization of the notion of \emph{[[polarization]]} from traditional [[geometric quantization]] to [[higher geometric quantization]] may need more thinking, but in the case of 2d Chern-Simons theory we can apply the following plausible shortcut. A [[Poisson Lie algebroid]] $(\mathfrak{P}, \mathbf{\omega})$ is a [[symplectic Lie n-algebroid]] for $n = 1$. This means that if we regard it as a [[dg-manifold]] (the dg-manifold whose [[dg-algebra]] of functions is the [[Chevalley-Eilenberg algebra]] $(CE(\mathfrak{P})$) then the [[invariant polynomial]] $\mathbf{\omega}$ constitutes a graded [[symplectic form]] on $\mathfrak{P}$. Since a [[real polarization]] of an ordinary [[symplectic manifold]] is equivalently a [[foliation]] by [[Lagrangian submanifolds]], it hence makes sense to take a [[real polarization]] of $(\mathfrak{P}, \mathbf{\omega})$ to consist of [[Lagrangian dg-submanifolds]]. As discussed there, for the [[Poisson Lie algebroid]] these corespond to the [[coisotropic submanifolds]] of the underlying [[Poisson manifold]] $(X, \pi)$. The same definition of polarization has been used/obtained in the study of [[geometric quantization of symplectic groupoids]] (see there). The [[branes]] of the [[2d Chern-Simons theory]] should be those leaves of the foliation which satisfy an extra [[BS-leaf|intrability condition]]. Indeed, according to [[branes]] of the [[Poisson sigma-model]] are supposed to be coisotropic submanifolds, see at \href{Poisson+sigma-model#Branes}{Poisson sigma-model -- Properties -- Branes}. \hypertarget{quantum_2states}{}\subsubsection*{{Quantum 2-states}}\label{quantum_2states} Summing up, the convolution subalgebra $\mathcal{A}_q \hookrightarrow \mathcal{A}$ of polarized sections is under $\phi$ the actual 2-vector space of states. In \emph{[[geometric quantization of symplectic groupoids]]} it is show that this is the algebra of observables of the [[quantum mechanical system]] of the underlying [[Poisson manifold]] (its [[strict deformation quantization]]). In fact we have to quantize the whole [[atlas]] of the [[symplectic groupoid]] \begin{displaymath} X \to \tau_1 \exp(\mathfrak{P}) \,. \end{displaymath} By the discussion at [[groupoid convolution algebra]] this yields a [[bimodule]] \hypertarget{symplectic_case}{}\paragraph*{{Symplectic case}}\label{symplectic_case} Consider the simple case where $(X,\omega)$ is a [[symplectic manifold]] and in fact a [[symplectic vector space]]. Here the [[symplectic groupoid]] is the [[pair groupoid]] $Pair(X)_\bullet$ carrying the trivial twist. The [[atlas]] is the object inclusion \begin{displaymath} X \to Pair(X) ,. \end{displaymath} Notice that this is equivalent ([[Morita equivalence|Morita equivalent]]) to just the terminal map \begin{displaymath} X \to * \,. \end{displaymath} Accordingly, the [[groupoid convolution algebra]] of $Pair(X)_\bullet$ is the [[C-star-algebra]] of [[compact operators]] $\mathcal{K}(X)$. A [[Morita equivalence]] [[bimodule]] from there to the ground field is (\ldots{}) The [[groupoid-principal bundle|groupoid-principal]]-[[bibundle]] corresponding to this atlas regarded as a [[Morita morphism]] is just the [[projection]] $X \times X \stackrel{p_1}{\to} X$. Hence the $C^\ast$-bimodule here is that generated from [[integral kernels]]. In conclusion, up to equivalence the bimodule is $L^2(X)$ regarded as a $C(X)-\mathbb{C}$-bimodule. (\ldots{}) \hypertarget{References}{}\subsection*{{References}}\label{References} \begin{itemize}% \item Stefan Bongers, \emph{[[schreiber:master thesis Bongers|Geometric quantization of symplectic and Poisson manifolds]]}, master thesis, Utrecht 2013 \item [[Joost Nuiten]], \emph{[[schreiber:master thesis Nuiten|Cohomological quantization of local prequantum boundary field theory]]}, master thesis, Utrecht 2013 \end{itemize} [[!redirects 2d Poisson-Chern-Simons theory]] [[!redirects 2d Poisson-Chern-Simons theories]] \end{document}