\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{extended probabilistic powerdomain} [[!redirects Extended probabilistic powerdomain]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{measure_and_probability_theory}{}\paragraph*{{Measure and probability theory}}\label{measure_and_probability_theory} [[!include measure theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{spaces_of_valuations}{Spaces of valuations}\dotfill \pageref*{spaces_of_valuations} \linebreak \noindent\hyperlink{functoriality}{Functoriality}\dotfill \pageref*{functoriality} \linebreak \noindent\hyperlink{unit_and_multiplication}{Unit and multiplication}\dotfill \pageref*{unit_and_multiplication} \linebreak \noindent\hyperlink{monoidal_structure}{Monoidal structure}\dotfill \pageref*{monoidal_structure} \linebreak \noindent\hyperlink{algebras}{Algebras}\dotfill \pageref*{algebras} \linebreak \noindent\hyperlink{notable_submonads}{Notable submonads}\dotfill \pageref*{notable_submonads} \linebreak \noindent\hyperlink{normalized_valuations}{Normalized valuations}\dotfill \pageref*{normalized_valuations} \linebreak \noindent\hyperlink{the_measure_monad_on_top}{The measure monad on Top}\dotfill \pageref*{the_measure_monad_on_top} \linebreak \noindent\hyperlink{the_probability_monad_on_top}{The probability monad on Top}\dotfill \pageref*{the_probability_monad_on_top} \linebreak \noindent\hyperlink{the_monad_of_topological_cones}{The monad of topological cones}\dotfill \pageref*{the_monad_of_topological_cones} \linebreak \noindent\hyperlink{the_monad_of_topological_convex_spaces}{The monad of topological convex spaces}\dotfill \pageref*{the_monad_of_topological_convex_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The extended probabilistic powerdomain is a [[monad of valuations]] on [[topological spaces]]. Its functor part assigns to a given [[topological space]] the space of [[continuous valuations]] over it. The idea of this monad was first given by Kirch for the case of [[domains]] (see \hyperlink{kirch}{Kirch `93}, in German, or \hyperlink{Jung}{AJK `06}, in English). It was extended to all of [[Top]] and given its current form by Heckmann (see \hyperlink{Heckmann96}{Heckmann `96}). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{spaces_of_valuations}{}\subsubsection*{{Spaces of valuations}}\label{spaces_of_valuations} Given a [[topological space]] $X$, denote by $V X$ the space whose points are [[continuous valuations]] on $X$ with values in $[0,\infty]$. Equip $V X$ with the [[topology]] [[topological basis|generated]] by the sets in the form \begin{displaymath} \theta(U,r) \coloneqq \{ \nu \in V X \,|\, \nu(U) \gt r \}, \end{displaymath} for $r\ge 0$ and $U\subseteq X$ [[open]], or equivalently by the sets in the form \begin{displaymath} \Theta(g,r) \coloneqq \left\{ \nu \in V X \,\Big|\, \int g \,d\nu \gt r \right\} \end{displaymath} for $r\ge 0$ and $g:X\to[0,\infty]$ [[lower semicontinuous]]. This topology can be seen as the [[pointwise topology]] if we view valuations either as functions on the [[open sets]] or as [[functionals]] on lower semicontinuous functions (via [[continuous valuation\#integration|integration]]). It is also the [[initial topology]] of either evaluation of open sets or integration of functions, meaning that it is the coarsest topology for which either the assignments \begin{displaymath} \nu \mapsto \nu(U) \end{displaymath} for every open $U\subseteq X$, or \begin{displaymath} \nu \mapsto \int g \, d\nu \end{displaymath} for every lower semicontinuous $g:X\to[0,\infty]$, are lower semicontinuous. Lower semicontinuity, in some sense, plays the role that [[measurable function|measurability]] plays for the [[Giry monad]] (see also [[correspondence between measure and valuation theory]]). The [[specialization preorder]] of this topology is known as the [[stochastic order]], and can be seen as the [[pointwise order]] of valuations as functions on the open sets. It is known (see \hyperlink{jung2}{Jung `04}) that if $X$ is [[stably compact]], then $V X$ is stably compact too, so that the monad $V$ restrict to the subcategory of [[stably compact spaces]]. \hypertarget{functoriality}{}\subsubsection*{{Functoriality}}\label{functoriality} Given a [[continuous map]] $f:X\to Y$, define the map $f:V X\to V Y$ as the one assigning to a continuous valuation $\nu\in V X$ its [[continuous valuation\#pushforward|pushforward]] along $f$. It can be proven that the map $V f$ is continuous too, so that $V$ is an [[endofunctor]] of [[Top]]. \hypertarget{unit_and_multiplication}{}\subsubsection*{{Unit and multiplication}}\label{unit_and_multiplication} We can define the unit of the [[monad]] as follows. Given a space $X$, define the map $\delta:X\to V X$ as the one assigning to the point $x\in X$ the [[valuation (measure theory)\#dirac\_valuation|Dirac valuation]] at $x$. This map $\delta$ is [[continuous map|continuous]], and [[natural transformation|natural]] in $X$. The multiplication map makes use of the concept of [[valuation (measure theory)\#integration|integration over a valuation]]. Given a valuation $\xi\in V V X$, we can define the valuation $E \xi\in V X$ as the one mapping an [[open]] set $U\subseteq X$ to \begin{displaymath} E \xi (U) \coloneqq \int_X \nu(U) \, d\xi(\nu). \end{displaymath} This integral is well defined, since the assignment $U\mapsto \nu(U)$ is [[lower semicontinuous]]. The assignment $U\mapsto E \xi (U)$ gives a [[continuous valuation]] on $X$, and the resulting map $E: V V X \to V X$ is [[continuous map|continuous]] and [[natural transformation|natural]] in $X$. The maps $\delta$ and $E$ satisfy the usual [[axioms]] of a [[monad]]. The monad $(V,\delta,E)$ is usually called the \textbf{extended probabilistic powerdomain}. This construction, especially the way the unit and multiplications are defined, can be thought of as a topological analogue of the [[Giry monad]]. \hypertarget{monoidal_structure}{}\subsection*{{Monoidal structure}}\label{monoidal_structure} (\ldots{}) \hypertarget{algebras}{}\subsection*{{Algebras}}\label{algebras} (\ldots{}) \hypertarget{notable_submonads}{}\subsection*{{Notable submonads}}\label{notable_submonads} There are a number of monads that can be constructed as submonads of $V$. The [[monoidal functor|monoidal structure]] of $V$ is inherited by these submonads too, allowing the formation of joints and marginals. See also [[monads of probability, measures, and valuations\#detailed\_list|monads of probability, measures, and valuations - detailed list]]. \hypertarget{normalized_valuations}{}\subsubsection*{{Normalized valuations}}\label{normalized_valuations} If one restricts to \emph{normalized} valuations, i.e.{\tt \symbol{126}}those $\nu\in V X$ with $\nu(X)=1$, one obtains a submonad of $V$ which can be thought of as the one of [[probability]] valuations. \hypertarget{the_measure_monad_on_top}{}\subsubsection*{{The measure monad on Top}}\label{the_measure_monad_on_top} One can restrict $V$ only to those valuations which are [[valuation (measure theory)\#extending\_valuations\_to\_measures|extendable to measures]]. The resulting subspace $M X\subseteq V X$ (for every topological space $X$) is the space of [[tau-additive measures]] on $X$, with the subspace topology inherited by $V X$. For probability measures, this topology is sometimes known as the \textbf{A-topology}, after Alexandrov (not to be confused with the [[Alexandrov topology]], which is a different concept), for example in \hyperlink{bogachev2}{Bogachev, section 8.10.iv}. The [[specialization preorder]] is again the [[stochastic order]]. Since extendable valuations are stable with respect to pushforwards and integrations, $M$ forms a submonad of $V$, the \textbf{measure monad on [[Top]]}. More details can be found in \hyperlink{support}{Fritz-Perrone-Rezagholi `19}, worked out explicitly for the normalized case (see below). See also [[correspondence between measure and valuation theory]]. \hypertarget{the_probability_monad_on_top}{}\subsubsection*{{The probability monad on Top}}\label{the_probability_monad_on_top} If one restricts the measure monad above to the $\tau$-smooth \emph{probability} measures (i.e. normalized), one obtains again a submonad, which seems to be the most general [[probability monad]] on [[Top]]. If a topological space is [[Tychonoff space|Tychonoff]] (for example a [[metric space]] or a [[compactum|compact Hausdorff space]]), the A-topology for probability measures coincides with the usual [[weak topology]] of measures with respect to continuous functions. In particular, on the [[subcategory]] of [[compactum|compact Hausdorff spaces]], this monad restricts to the [[Radon monad]]. \hypertarget{the_monad_of_topological_cones}{}\subsubsection*{{The monad of topological cones}}\label{the_monad_of_topological_cones} If one restrict to [[valuation (measure theory)\#simple\_valuations|simple valuations]], i.e. those that are linear combinations of deltas, one obtains again a submonad of $V$, which can be thought of as the free [[topological cone]] monad (or free internal $[0,\infty]$-[[module object]] monad). \hypertarget{the_monad_of_topological_convex_spaces}{}\subsubsection*{{The monad of topological convex spaces}}\label{the_monad_of_topological_convex_spaces} If one further restricts to \emph{normalized} simple valuations, one obtains as submonad the free [[topological convex space]] monad. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[monads of probability, measures, and valuations]] \item [[monads in computer science]] \item [[valuation (measure theory)]] \item [[correspondence between measure and valuation theory]] \item [[Giry monad]], [[Radon monad]], [[probabilistic powerdomain]], [[valuation monad on locales]], [[distribution monad]] \item [[convex space]], [[conical space]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Olaf Kirch, \emph{Bereiche und Bewertungen} (in German), Master Thesis, Technische Hochschule Darmstadt, 1993 (\href{http://fb04286.mathematik.tu-darmstadt.de/fbereiche/logik/research/Domains/papers/kirch/diplom.ps.gz}{ps.gz}) \item Reinhold Heckmann, \emph{Spaces of valuations}, Papers on General Topology and Ap-plications, 1996 (\href{https://doi.org/10.1111/j.1749-6632.1996.tb49168.x}{doi:10.1111/j.1749-6632.1996.tb49168.x},\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.5845&rep=rep1&type=pdf}{pdf}) \item Achim Jung, \emph{Stably compact spaces and the probabilistic powerspace construction}, ENTCS 87, 2004 (\href{https://doi.org/10.1016/j.entcs.2004.10.001}{doi:10.1016/j.entcs.2004.10.001}). \item Mauricio Alvarez-Manilla, Achin Jung, [[Klaus Keimel]], \emph{The probabilistic powerdomain for stably compact spaces}, Theoretical Computer Science 328, 2004 (\href{https://doi.org/10.1016/j.tcs.2004.06.021}{doi:10.1016/j.tcs.2004.06.021}) \item [[Jean Goubault-Larrecq]] and Xiaodong Jia, \emph{Algebras of the extended probabilistic powerdomain monad}, ENTCS 345, 2019 (\href{https://doi.org/10.1016/j.entcs.2019.07.015}{doi:10.1016/j.entcs.2019.07.015}) \item [[Tobias Fritz]], Paolo Perrone and Sharwin Rezagholi, \emph{Probability, valuations, hyperspace: Three monads on Top and the support as a morphism}, 2019 (\href{https://arxiv.org/abs/1910.03752}{arXiv:1910.03752}) \item V. Bogachev, \emph{Measure Theory}, vol. 2 (2007). \end{itemize} [[!redirects extended probabilistic powerdomain]] [[!redirects valuation monad on top]] [[!redirects valuation monad on topological spaces]] \end{document}