\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{extension of distributions} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{functional_analysis}{}\paragraph*{{Functional analysis}}\label{functional_analysis} [[!include functional analysis - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{SolutionSpaceOfPointExtensions}{Point-extensions}\dotfill \pageref*{SolutionSpaceOfPointExtensions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{powers_of_feynman_propagators}{Powers of Feynman propagators}\dotfill \pageref*{powers_of_feynman_propagators} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a suitable [[subspace]] inclusion $X \hookrightarrow \hat X$ and a [[distribution]] $u$ on $X$, then an \emph{extension} of $u$ to $\hat X$ is a distribution $\hat u$ on $\hat X$ whose [[restriction of distributions]] to $X$ coincides with $u$. If $u$ comes from an ordinary [[smooth function]] or else if $u$ is properly understood as a [[generalized function]], then this corresponds to an ordinary [[extension]] \begin{displaymath} \itexarray{ X &\overset{u}{\longrightarrow}& \mathbb{R} \\ \downarrow & \nearrow_{\mathrlap{\hat u}} \\ \hat X } \end{displaymath} Regarding that we the distributions are not the maps from the underlying space we need to replace pre-composition $X\to\tilde{X}$ by the appropriate [[pullback of distributions]] always defined say if $X\to\tilde{X}$ is a submersion; in the case of an [[open embedding]] (see \href{pullback+of+a+distribution#RestrictionOfDistributions}{this example}) this operation is the \emph{restriction of distributions}, the operation dual to the operation of extension by zero of test functions. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For an inclusion of two open sets on a manifold $U\subset V$ there is an operator of \emph{extension by zero} $E_{V U}: C^\infty_0(U)\to C^\infty_0(V)$ where $E_{V U}(f)(x) = f(x)$ if $x\in U$ and $E_{U V}(f)(x) = 0$ otherwise. The \textbf{[[restriction of distributions]]} $\rho_{U V} : \mathcal{D}'(V)\to \mathcal{D}'(U)$ is then defined by \begin{displaymath} \langle \rho_{U V}(\phi), f\rangle = \langle \phi, E_{V U} f\rangle, \,\,\,\,\,\,\,f\in C^\infty_0(U),\,\phi\in \mathcal{D}'(V). \end{displaymath} (\href{pullback+of+a+distribution#RestrictionOfDistributions}{this example}). Now the diagram in the idea section makes sense in the following way: for an open embedding $X\hookrightarrow\hat{X}$, $\hat{u}\in\mathcal{D}'(\hat{X})$ \textbf{extends} $u\in \mathcal{D}'(X)$ if $\rho_{X\hat{X}}(\hat{u}) = u$. \begin{defn} \label{ExtensionOfDistributions}\hypertarget{ExtensionOfDistributions}{} \textbf{([[extension of distributions]])} Let $X \overset{\iota}{\subset} \hat X$ be an inclusion of [[open subsets]] of some [[Cartesian space]]. This induces the operation of [[restriction of distributions]] \begin{displaymath} \mathcal{D}'(\hat X) \overset{\iota^\ast}{\longrightarrow} \mathcal{D}'(X) \,. \end{displaymath} Given a [[distribution]] $u \in \mathcal{D}'(X)$, then an \emph{[[extension]]} of $u$ to $\hat X$ is a distribution $\hat u \in \mathcal{D}'(\hat X)$ such that \begin{displaymath} \iota^\ast \hat u \;=\; u \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{SolutionSpaceOfPointExtensions}{}\subsubsection*{{Point-extensions}}\label{SolutionSpaceOfPointExtensions} Of particular interest is the special case of [[extension of distributions]] to a single point $p \in \hat X$, hence where $X = \hat X \setminus \{p\}$ is the [[complement]] of that point. Contrary to ordinary [[smooth functions]], distributions ([[generalized functions]]) in general have more than one extension to a point, where the freedom is in choosing a [[distribution with point support]] at that point, hence some [[derivative of a distribution|derivative]] of the [[delta distribution]] [[support of a distribution|supported]] at that point. However, if one requires that the [[scaling degree of a distribution|scaling degree]] of the extended distribution at the given point is compatible with that of the original distribution, then there is only a [[finite set]] of possible extensions, parameterized by the [[coefficients]] of a finite number of derivatives of the delta-distribution (prop. \ref{SpaceOfPointExtensions} below). In the construction of [[perturbative quantum field theories]] via [[causal perturbation theory]], where the (``[[operator-valued distributions|operator-valued]]'') distributions in questions are [[time-ordered product]] coefficients in the [[scattering matrix]] and where the point being extended to corresponds to the point where an [[interaction]] happens, this finite set of choices is identified with the [[renormalization|(``re''-)normalization]] freedom. We discuss specifically the space of solutions of extending a distribution on the [[complement]] $\mathbb{R}^n \setminus \{0\}$ of the origin inside a [[Cartesian space]] to the full space $\mathbb{R}^n$. \begin{prop} \label{ExtensionUniqueNonPositiveDegreeOfDivergence}\hypertarget{ExtensionUniqueNonPositiveDegreeOfDivergence}{} \textbf{(unique [[extension of distributions]] with negative [[degree of divergence of a distribution|degree of divergence]])} For $n \in \mathbb{N}$, let $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ be a [[distribution]] on the [[complement]] of the origin, with [[negative number|negative]] [[degree of divergence of a distribution|degree of divergence]] at the origin \begin{displaymath} deg(u) \lt 0 \,. \end{displaymath} Then $u$ has a \emph{unique} [[extension of distributions]] $\hat u \in \mathcal{D}'(\mathbb{R}^n)$ to the origin with the same degree of divergence \begin{displaymath} deg(\hat u) = deg(u) \,. \end{displaymath} \end{prop} (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00, theorem 5.2}, \hyperlink{Duetsch18}{Dütsch 18, theorem 3.35 a)}) \begin{proof} Regarding uniqueness: Suppose $\hat u$ and ${\hat u}^\prime$ are two extensions of $u$ with $deg(\hat u) = deg({\hat u}^\prime)$. Both being extensions of a distribution defined on $\mathbb{R}^n \setminus \{0\}$, this difference has [[support of a distribution|support]] at the origin $\{0\} \subset \mathbb{R}^n$. By \href{point-supported+distribution#PointSupportedDistributionsAreSumsOfDerivativesOfDeltaDistibutions}{this prop.} this implies that it is a linear combination of [[derivative of a distribution|derivatives]] of the [[delta distribution]] [[support of a distribution|supported]] at the origin: \begin{displaymath} {\hat u}^\prime - \hat u \;=\; \underset{ {\alpha \in \mathbb{N}^n} }{\sum} c^\alpha \partial_\alpha \delta_0 \end{displaymath} for constants $c^\alpha \in \mathbb{C}$. But by \href{scaling+degree+of+a+distribution#DerivativesOfDeltaDistributionScalingDegree}{this example} the [[degree of divergence of a distribution|degree of divergence]] of these [[point-supported distributions]] is non-negative \begin{displaymath} deg( \partial_\alpha \delta_0) = {\vert \alpha\vert} \geq 0 \,. \end{displaymath} This implies that $c^\alpha = 0$ for all $\alpha$, hence that the two extensions coincide. Regarding existence: Let \begin{displaymath} b \in C^\infty_{cp}(\mathbb{R}^n) \end{displaymath} be a [[bump function]] which is $\leq 1$ and [[constant function|constant]] on 1 over a [[neighbourhood]] of the origin. Write \begin{displaymath} \chi \coloneqq 1 - b \;\in\; C^\infty(\mathbb{R}^n) \end{displaymath} \begin{quote}% graphics grabbed from \hyperlink{Duetsch18}{Dütsch 18, p. 108} \end{quote} and for $\lambda \in (0,\infty)$ a [[positive real number]], write \begin{displaymath} \chi_\lambda(x) \coloneqq \chi(\lambda x) \,. \end{displaymath} Since the [[product of distributions|product]] $\chi_\lambda u$ has [[support of a distribution]] on a [[complement]] of a [[neighbourhood]] of the origin, we may extend it by zero to a distribution on all of $\mathbb{R}^n$, which we will denote by the same symbols: \begin{displaymath} \chi_\lambda u \in \mathcal{D}'(\mathbb{R}^n) \,. \end{displaymath} By construction $\chi_\lambda u$ coincides with $u$ away from a neighbourhood of the origin, which moreover becomes arbitrarily small as $\lambda$ increases. This means that if the following [[limit of a sequence|limit]] exists \begin{displaymath} \hat u \;\coloneqq\; \underset{\lambda \to \infty}{\lim} \chi_\lambda u \end{displaymath} then it is an extension of $u$. To see that the limit exists, it is sufficient to observe that we have a [[Cauchy sequence]], hence that for all $b\in C^\infty_{cp}(\mathbb{R}^n)$ the difference \begin{displaymath} (\chi_{n+1} u - \chi_n u)(b) \;=\; u(b)( \chi_{n+1} + \chi_n ) \end{displaymath} becomes arbitrarily small. It remains to see that the unique extension $\hat u$ thus established has the same scaling degree as $u$. This is shown in (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00, p. 24}). \end{proof} \begin{prop} \label{SpaceOfPointExtensions}\hypertarget{SpaceOfPointExtensions}{} \textbf{(space of [[point-extensions of distributions]])} For $n \in \mathbb{N}$, let $u \in \mathcal{D}'(\mathbb{R}^n \setminus \{0\})$ be a [[distribution]] of [[scaling degree of a distribution|degree of divergence]] $deg(u) \lt \infty$. Then $u$ does admit at least one [[extension of distributions|extension]] (def. \ref{ExtensionOfDistributions}) to a distribution $\hat u \in \mathcal{D}'(\mathbb{R}^n)$, and every choice of extension has the same [[degree of divergence of a distribution|degree of divergence]] as $u$ \begin{displaymath} deg(\hat u) = deg(u) \,. \end{displaymath} Moreover, any two such extensions $\hat u$ and ${\hat u}^\prime$ differ by a linear combination of [[partial derivatives|partial]] [[derivatives of distributions]] of order $\leq deg(u)$ of the [[delta distribution]] $\delta_0$ [[support of a distribution|supported]] at the origin: \begin{displaymath} {\hat u}^\prime - \hat u \;=\; \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha\vert} \leq deg(u) } }{\sum} q^\alpha \partial_\alpha \delta_0 \,, \end{displaymath} for a finite number of constants $q^\alpha \in \mathbb{C}$. \end{prop} This is essentially (\hyperlink{Hoermander90}{Hörmander 90, thm. 3.2.4}). We follow (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00, theorem 5.3}), which was inspired by (\hyperlink{EpsteinGlaser73}{Epstein-Glaser 73, section 5}). Review of this approach is in (\hyperlink{Duetsch18}{Dütsch 18, theorem 3.35 (b)}), see also remark \ref{WExtensions} below. \begin{proof} For $f \in C^\infty(\mathbb{R}^n)$ a [[smooth function]], and $\rho \in \mathbb{N}$, we say that \emph{$f$ vanishes to order $\rho$} at the origin if all [[partial derivatives]] with multi-index $\alpha \in \mathbb{N}^n$ of total order ${\vert \alpha\vert} \leq \rho$ vanish at the origin: \begin{displaymath} \partial_\alpha f (0) = 0 \phantom{AAA} {\vert \alpha\vert} \leq \rho \,. \end{displaymath} By [[Hadamard's lemma]], such a function may be written in the form \begin{equation} f(x) \;=\; \underset{ {\alpha \in \mathbb{N}^n} \atop { {\vert \alpha \vert} = \rho + 1 } }{\sum} x^\alpha r_\alpha(x) \label{ForVanishingOrderRhoHadamardExpansion}\end{equation} for [[smooth functions]] $r_\alpha \in C^\infty_{cp}(\mathbb{R}^n)$. Write \begin{displaymath} \mathcal{D}_\rho(\mathbb{R}^n) \hookrightarrow \mathcal{D}(\mathbb{R}^n) \coloneqq C^\infty_{cp}(\mathbb{R}^n) \end{displaymath} for the subspace of that of all [[bump functions]] on those that vanish to order $\rho$ at the origin. By definition this is equivalently the joint [[kernel]] of the [[partial derivative|partial]] [[derivatives of distributions]] of order ${\vert \alpha\vert}$ of the [[delta distribution]] $\delta_0$ [[support of a distribution|supported]] at the origin: \begin{displaymath} b \in \mathcal{D}_\rho(\mathbb{R}^n) \phantom{AA} \Leftrightarrow \phantom{AA} \underset{ {\alpha \in \mathbb{N}^n} \atop { {\vert \alpha\vert} \leq \rho } } {\forall} \left\langle \partial_\alpha \delta_0, b \right\rangle = 0 \,. \end{displaymath} Therefore every [[continuous linear map|continuous linear]] [[projection]] \begin{displaymath} p_\rho \;\colon\; \mathcal{D}(\mathbb{R}^n) \longrightarrow \mathcal{D}_\rho(\mathbb{R}^n) \end{displaymath} may be obtained from a choice of \emph{dual basis} to the $\{\partial_\alpha \delta_0\}$, hence a choice of smooth functions \begin{displaymath} \left\{ w^\beta \in C^\infty_{cp}(\mathbb{R}^n) \right\}_{ { \beta \in \mathbb{N}^n } \atop { {\vert \beta\vert} \leq \rho } } \end{displaymath} such that \begin{displaymath} \left\langle \partial_\alpha \delta_0 \,,\, w^\beta \right\rangle \;=\; \delta_\alpha^\beta \phantom{AAA} \Leftrightarrow \phantom{AAA} \partial_\alpha w^\beta(0) \;=\; \delta_\alpha^\beta \phantom{AAAA} \text{for}\, {\vert \alpha\vert} \leq \rho \,, \end{displaymath} by setting \begin{equation} p_\rho \;\coloneqq\; id \;-\; \left\langle \underset{ {\alpha \in \mathbb{N}^n} \atop { {\vert \alpha\vert} \leq \rho } }{\sum} w^\alpha \partial_\alpha \delta_0 \,,\, (-) \right\rangle \,, \label{SpaceOfSmoothFunctionsOfGivenVaishingOrderProjector}\end{equation} hence \begin{displaymath} p_\rho \;\colon\; b \mapsto b - \underset{ {\alpha \in \mathbb{N}^n} \atop { {\vert \alpha\vert} \leq \rho } }{\sum} (-1)^{{\vert \alpha\vert}} w^\alpha \partial_\alpha b(0) \,. \end{displaymath} Together with [[Hadamard's lemma]] in the form \eqref{ForVanishingOrderRhoHadamardExpansion} this means that every $b \in \mathcal{D}(\mathbb{R}^n)$ is decomposed as \begin{equation} \begin{aligned} b(x) & = p_\rho(b)(x) \;+\; (id - p_\rho)(b)(x) \\ & = \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha \vert} = \rho + 1 } }{\sum} x^\alpha r_\alpha(x) \;+\; \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha \vert} \leq \rho } }{\sum} (-1)^{{\vert \alpha \vert}} w^\alpha \partial_\alpha b(0) \end{aligned} \label{ForExtensionOfDistributionsTestFunctionDecomposition}\end{equation} Now let \begin{displaymath} \rho \;\coloneqq\; deg(u) \,. \end{displaymath} Observe that (by \href{scaling+degree+of+a+distribution#ScalingDegreeOfDistributionsBasicProperties}{this prop.}) the [[degree of divergence of a distribution|degree of divergence]] of the [[product of distributions]] $x^\alpha u$ with ${\vert \alpha\vert} = \rho + 1$ is [[negative number|negative]] \begin{displaymath} \begin{aligned} deg\left( x^\alpha u \right) & = \rho - {\vert \alpha \vert} \leq -1 \end{aligned} \end{displaymath} Therefore prop. \ref{ExtensionUniqueNonPositiveDegreeOfDivergence} says that each $x^\alpha u$ for ${\vert \alpha\vert} = \rho + 1$ has a unique extension $\widehat{ x^\alpha u}$ to the origin. Accordingly the composition $u \circ p_\rho$ has a unique extension, by \eqref{ForExtensionOfDistributionsTestFunctionDecomposition}: \begin{displaymath} \begin{aligned} \left\langle \hat u \,,\, b \right\rangle & = \left\langle \hat u , p_\rho(b) \right\rangle + \left\langle \hat u , (id - p_\rho)(b) \right\rangle \\ & = \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha \vert} = \rho + 1 } }{\sum} \underset{ \text{unique} }{ \underbrace{ \left\langle \widehat{x^\alpha u} \,,\, r_\alpha \right\rangle } } \;+\; \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha\vert} \leq \rho } }{\sum} \underset{ \text{choice} }{ \underbrace{ \langle \hat u \,,\, w^\alpha \rangle } } \left\langle \partial_\alpha \delta_0 \,,\, b \right\rangle \end{aligned} \end{displaymath} That says that $\hat u$ is of the form \begin{displaymath} \hat u \;=\; \underset{ \text{unique} }{ \underbrace{ \widehat{ u \circ p_\rho } } } + \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha\vert} \leq \rho } }{\sum} c^\alpha \, \partial_\alpha \delta_0 \end{displaymath} for a finite number of constants $c^\alpha \in \mathbb{C}$. Notice that for any extension $\hat u$ the exact value of the $c^\alpha$ here depends on the arbitrary choice of dual basis $\{w^\alpha\}$ used for this construction. But the uniqueness of the first summand means that for any two choices of extensions $\hat u$ and ${\hat u}^\prime$, their difference is of the form \begin{displaymath} {\hat u}^\prime - \hat u \;=\; \underset{ { \alpha \in \mathbb{N}^n } \atop { {\vert \alpha\vert} \leq \rho } }{\sum} ( (c')^\alpha - c^\alpha ) \, \partial_\alpha \delta_0 \,, \end{displaymath} where the constants $q^\alpha \coloneqq ( (c')^\alpha - c^\alpha ) \in \mathbb{C}$ are independent of any choices. It remains to see that all these $\hat u$ in fact have the same degree of divergence as $u$. By \href{scaling+degree+of+a+distribution#DerivativesOfDeltaDistributionScalingDegree}{this example} the degree of divergence of the point-supported distributions on the right is $deg(\partial_\alpha \delta_0) = {\vert \alpha\vert} \leq \rho$. Therefore to conclude it is now sufficient to show that \begin{displaymath} deg\left( \widehat{ u \circ p_\rho } \right) \;=\; \rho \,. \end{displaymath} This is shown in (\hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00, p. 25}). \end{proof} \begin{remark} \label{WExtensions}\hypertarget{WExtensions}{} \textbf{(``W-extensions'')} Since in \hyperlink{BrunettiFredenhagen00}{Brunetti-Fredenhagen 00, (38)} the projectors \eqref{SpaceOfSmoothFunctionsOfGivenVaishingOrderProjector} are denoted ``$W$'', the construction of [[extensions of distributions]] via the proof of prop. \ref{SpaceOfPointExtensions} has come to be called ``W-extensions'' (e.g \hyperlink{Duetsch18}{Dütsch 18}). \end{remark} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{powers_of_feynman_propagators}{}\subsubsection*{{Powers of Feynman propagators}}\label{powers_of_feynman_propagators} Extension of powers of [[Feynman propagators]] on [[globally hyperbolic spacetimes]] to the [[diagonal]] are worked out explicitly in (\hyperlink{Hollands07}{Hollands 07, section 3.4}). \hypertarget{references}{}\subsection*{{References}}\label{references} The argument for the characterization of the point extension of distributions goes back to \begin{itemize}% \item [[Henri Epstein]] and [[Vladimir Glaser]], section 5 of \emph{[[The role of locality in perturbation theory]]}, Annales Poincar\'e{} Phys. Theor. A 19 (1973) 211 (\href{http://www.numdam.org/item?id=AIHPA_1973__19_3_211_0}{Numdam}) \end{itemize} thereby laying the foundation for [[causal perturbation theory]]. A textbook account in [[functional analysis]] is in \begin{itemize}% \item [[Lars Hörmander]], theorem 3.2.4 of \emph{The Analysis of Linear Partial Differential Operators I} (Springer, 1990, 2nd ed.) \end{itemize} A more concise formulation and proof is due to \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], section 5.2 of \emph{Microlocal analysis and interacting quantum field theories: Renormalization on Physical Backgrounds}, Commun. Math. Phys. 208 : 623-661, 2000 (\href{https://arxiv.org/abs/math-ph/9903028}{math-ph/9903028}) \end{itemize} reviewed in \begin{itemize}% \item [[Michael Dütsch]], theorem 3.35 of \emph{[[From classical field theory to perturbative quantum field theory]]}, 2018 \end{itemize} Exposition of the application to [[renormalization]] of [[Feynman diagrams]] is in \begin{itemize}% \item [[Christian Brouder]], \emph{Multiplication of distributions}, 2010 ([[BrouderProductOfDistributions.pdf:file]]) \end{itemize} The refinement to the point-extension problem for distributions in the solution space of a given system of [[differential equations]] is discussed in \begin{itemize}% \item Dorothea Bahns, Micha Wrochna, \emph{On-shell extension of distributions}, \href{https://arxiv.org/abs/1210.5448}{arXiv:1210.5448} \end{itemize} Examples and applications to [[renormalization]] in [[perturbative quantum field theory]] are discussed for instance in \begin{itemize}% \item [[Stefan Hollands]], sections 3.3 and 3.4 of \emph{Renormalized Quantum Yang-Mills Fields in Curved Spacetime}, Rev. Math. Phys. 20:1033-1172, 2008 (\href{https://arxiv.org/abs/0705.3340}{arXiv:0705.3340}) \end{itemize} For more on extension of distributions in [[renormalization]] see the references at \emph{[[causal perturbation theory]]} and \emph{[[locally covariant perturbative quantum field theory]]}. [[!redirects extensions of distributions]] [[!redirects extension of a distribution]] [[!redirects point-extension of a distribution]] [[!redirects point-extensions of distributions]] [[!redirects point-extension of distributions]] [[!redirects point-extensions of distributions]] \end{document}