\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{extension system} \begin{quote}% \emph{Note: This page is about an alternative presentation of [[monads]]. There is a different notion of ``extension system'' that is to a [[bicategory]] what a [[closed category]] is to a [[monoidal category]]; for this, see [[closed category]].} \end{quote} \hypertarget{extension_systems}{}\section*{{Extension systems}}\label{extension_systems} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_kleisli_category}{The Kleisli category}\dotfill \pageref*{the_kleisli_category} \linebreak \noindent\hyperlink{the_category_of_algebras}{The category of algebras}\dotfill \pageref*{the_category_of_algebras} \linebreak \noindent\hyperlink{strong_monads}{Strong monads}\dotfill \pageref*{strong_monads} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{extension system} is a way of presenting a [[monad]] that doesn't involve iteration of the underlying endofunctor. This is simpler for certain purposes, and the operations involved are more basic to some applications such as [[monads in computer science]]. From (\hyperlink{MarmolejoWood10}{Marmolejo-Wood 10}): \begin{quote}% there is an important overarching reason to consider monads in this way. Extension systems allow us to completely dispense with the iterates $[$\ldots{}$]$ of the underlying arrow. No iteration is necessary. A moment's reflection on the various terms of terms and terms of terms of terms that occur in practical applications suggest that this alone justies the alternate approach. $[$\ldots{}$]$ we note that extension systems in [[higher category theory|higher dimensional category theory]] provide an even more important simplication of monads. For even in dimension 2, some of the tamest examples are built on [[pseudofunctors]] that are difficult to iterate. \end{quote} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{extension system} (\hyperlink{MarmolejoWood10}{Marmolejo-Wood 10}) on a [[category]] $C$ consists of \begin{itemize}% \item For every [[object]] $A\in C$, an object $T A\in C$ and a [[morphism]] $\eta_A \colon A\to T A$, and \item For every [[morphism]] $f\colon B\to T A$ in $C$, a morphism $f^T \colon T B \to T A$, satisfying the following [[axioms]]: \begin{itemize}% \item For every $A$ we have $(\eta_A)^T = 1_{T A}$, \item For every $f \colon B\to T A$, we have $f^T \circ \eta_B = f$, and \item For every $f \colon B\to T A$ and $g:C \to T B$, we have $f^T \circ g^T = (f^T \circ g)^T$. \end{itemize} \end{itemize} Given these data, we make $T$ a [[functor]] by $T f = (\eta_A \circ f)^T$, we define multiplication maps $\mu_A:T T A \to T A$ as $(1_{T A})^T$, and we verify that the result is a [[monad]]. Conversely, given a monad $(T,\eta,\mu)$, we define $f^T = \mu_A \circ T f$ and check the above axioms. Thus, extension systems are [[equivalence|equivalent]] to monads. \hypertarget{the_kleisli_category}{}\subsubsection*{{The Kleisli category}}\label{the_kleisli_category} This presentation of a monad is especially convenient for defining the [[Kleisli category]] $C_T$: its objects are those of $C$, its morphisms $B\to A$ are the morphisms $B\to T A$ in $C$, and the composite of $f:B\to T A$ with $g:C \to T B$ is $f^T \circ g$. \hypertarget{the_category_of_algebras}{}\subsubsection*{{The category of algebras}}\label{the_category_of_algebras} It is also possible to define [[algebras over a monad]] using this presentation. A $T$-algebra consists of \begin{itemize}% \item An object $B$, and \item For every morphism $h:X\to B$, a morphism $h^B : T X \to B$, such that \item For every $h:X\to B$ we have $h^B \circ \eta_X = h$, and \item For every $h:X\to B$ and $y:Y\to T X$ we have $h^B \circ y^T = (h^B \circ y)^B$. \end{itemize} \hypertarget{strong_monads}{}\subsubsection*{{Strong monads}}\label{strong_monads} When $C$ is a [[cartesian closed category]], to make $T$ a [[strong monad]] we simply have to enhance the extension operation $(-)^T$ to an internal morphism $(T A)^B \to (T A)^{T B}$, or equivalently $T B \times (T A)^B \to T A$. This morphism is known as ``bind'' in use of [[monads in computer science]]. \hypertarget{references}{}\subsection*{{References}}\label{references} The above definitions are from \begin{itemize}% \item F. Marmolejo and R. J. Wood, \emph{Monads as extension systems -- no iteration is necessary}, \href{http://www.tac.mta.ca/tac/volumes/24/4/24-04abs.html}{TAC} 2010. \end{itemize} but the definition of monad as extension system appeared in \begin{itemize}% \item E. G. Manes. \emph{Algebraic Theories}. Springer-Verlag, 1976. \end{itemize} and this definition and also the definition of algebras by an extension operation appeared in \begin{itemize}% \item R.F.C. Walters, \emph{A categorical approach to universal algebra}, Ph.D. Thesis, 1970. \end{itemize} See also \begin{itemize}% \item F. Marmolejo and R. J. Wood, \emph{Kan extensions and lax idempotent pseudomonads}, \href{http://www.tac.mta.ca/tac/volumes/26/1/26-01abs.html}{TAC} 2012 \item F. Marmolejo and R. J. Wood, \emph{No-iteration pseudomonads}, \href{http://www.tac.mta.ca/tac/volumes/28/14/28-14abs.html}{TAC} 2013 \end{itemize} The definition of monad as an extension system was used by [[Eugenio Moggi]] (and referred to as a ``Kleisli triple'') in his original paper introducing the application of [[monads in computer science]] for modeling different notions of computation: \begin{itemize}% \item [[Eugenio Moggi]], \emph{Notions of computation and monads}, Information And Computation, 93(1), 1991. (\href{http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf}{pdf}) \end{itemize} This way of presenting a monad is also closely related to [[continuation-passing style]], as described in \begin{itemize}% \item [[Andrzej Filinski]], \emph{Representing Monads}, POPL 1994. (\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.43.8213&rep=rep1&type=pdf}{pdf}) \end{itemize} [[!redirects extension systems]] \end{document}