\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{exterior differential system} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{commonfurtherassumptions}{Common further assumptions}\dotfill \pageref*{commonfurtherassumptions} \linebreak \noindent\hyperlink{special_cases}{special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{frobenius_system}{Frobenius system}\dotfill \pageref*{frobenius_system} \linebreak \noindent\hyperlink{vertical_tangent_lie_algebroid}{vertical tangent Lie algebroid}\dotfill \pageref*{vertical_tangent_lie_algebroid} \linebreak \noindent\hyperlink{systems_of_partial_differential_equations}{systems of partial differential equations}\dotfill \pageref*{systems_of_partial_differential_equations} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\section*{{Idea}}\label{idea} There are several different ways to think about differential systems: \begin{itemize}% \item the [[category theory|general abstract way]] which we shall put forward here: an exterior differential system is a sub-[[Lie-∞-algebroid]] $\mathfrak{a} \hookrightarrow T X$ of the [[tangent Lie algebroid]] $T X$ of a [[manifold]] that is the [[kernel]] of a morphism $p : T X \to \mathfrak{j}$ of [[Lie-∞-algebroids]]: \begin{displaymath} \mathfrak{a} := ker(p) \hookrightarrow T X \stackrel{p}{\to} \mathfrak{j} \end{displaymath} \item In the literature -- the the \hyperlink{references}{references} below -- the term \emph{exterior differential system} is instead introduced and understood in the context of [[differential graded algebra|dg-algebra]] as a [[dg-ideal]] $J \subset \Omega^\bullet(X)$ inside the [[deRham dg-algebra]] of $X$ and all concepts there are developed from this perspective. From this the above perspective is obtained by noticing that from a dg-ideal $J$ we are naturally led to form the quotient [[dg-algebra]] $\Omega^\bullet(X)/J$ which is the [[cokernel]] of the inclusion $p^* : J \hookrightarrow \Omega^\bullet(X)$: \begin{displaymath} J \stackrel{p^*}{\hookrightarrow} \Omega^\bullet(X) \to coker(p^*) = \Omega^\bullet(X)/J \,. \end{displaymath} The existing literature on exterior differential systems is actually a bit unclear about which \hyperlink{commonfurtherassumptions}{additional assumptions} on $J$ are supposed to be a crucial part of the definition. However, in most applications of interest --- see the \hyperlink{examples}{examples} below --- it turns out that $J$ is in fact a [[semifree dga]] (over $C^\infty(X)$). Here we take this as indication that \begin{itemize}% \item it makes good sense to understand exterior differential systems in the restricted sense where the [[dg-ideal]] $J$ is required to be a [[semifree dga]]; \item the reason that the existing literature does present the desired extra assumptions on the [[dg-ideal]] $J$ in an incoherent fashion is due to a lack of global structural insight into the role of the definition of exterior differential systems. \end{itemize} Because, recall that a [[Lie-∞-algebroid]] is -- effectively by definition -- the formal dual of a [[semifree dga|semifree]] $\mathbb{N}$-graded commutative [[dg-algebra]]. So precisely with that extra condition on $J$ all [[dg-algebra]]s in the above may be understood as [[Chevalley-Eilenberg algebra]]s of [[Lie-∞-algebroids]] and then the above [[cokernel]] sequence of [[dg-algebra]]s is precisely the formal dual of the [[kernel]] sequence of [[Lie-∞-algebroid]]s. \item Historically, one can trace back the basic idea of exterior differential systems to [[Eli Cartan]]`s work on [[partial differential equation]]s in terms of [[differential forms]]: for each system of partial differential equations \begin{displaymath} \{ F^\rho(\{x^\mu\}_{\mu}, \{f^j\}_j, \{\frac{\partial f^j}{\partial x^\mu}\} ) = 0 \}_\rho \end{displaymath} there is a space $X$ and a [[dg-ideal]] $J \in \Omega^\bullet(X)$ such that solutions of the system of equations are given by \textbf{integral manifolds} of the exterior differential system determined by $J$. \end{itemize} The notion of an integral manifold of an exterior differential system is crucial in the theory: in terms of $J$ it is a morphism $\phi : \Sigma \to X$ of [[manifold]]s such that the pullback of the ideal vanishes, $\phi^* J = 0$. But this says precisely that $\phi$ extends to morphism of [[Lie-∞-algebroids]] \begin{displaymath} \phi : T \Sigma \to \mathfrak{a} \end{displaymath} with $CE(\mathfrak{a}) = \Omega^\bullet(X)/J$ as above. Therefore the relevance of the notion of \emph{integral manifolds} in the theory we take as another indication that exterior differential systems are usefully thought of as being about [[Lie-∞-algebroids]]. \hypertarget{definition}{}\section*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} An \textbf{exterior differential system} on a smooth [[manifold]] $X$ is a [[dg-ideal]] $J \subset \Omega^\bullet(X)$ of the [[deRham dg-algebra]] $\Omega^\bullet(X)$ of $X$. \end{defn} Notice that $J$ being a [[dg-ideal]] means explicitly that \begin{itemize}% \item $\forall \theta\in J \subset \Omega^\bullet(X), \omega \in \Omega^\bullet(X): \theta \wedge \omega \in J$ \item the $\mathbb{N}$-grading $J = \oplus_{k \in \mathbb{N}} J_k$ on the [[dg-algebra]] $J$ is induced from that of $\Omega^\bullet(X)$ in that $J_k = J \cap \Omega^\bullet(k)$ \item $\forall \theta \in J \subset \Omega^\bullet(X) : d \theta \in J$ \end{itemize} \begin{defn} \label{}\hypertarget{}{} An \textbf{integral manifold} of an exterior differential system is a submanifold $\phi : Y \hookrightarrow X$ such that the restriction of all $\theta \in J$ to $Y$ vanishes: $\that|_Y = 0$. \end{defn} In other words, for an integral manifold the pullback of the ideal $J$ along the inclusion map $\phi$ vanishes: $\phi^* J = 0$. \hypertarget{commonfurtherassumptions}{}\subsection*{{Common further assumptions}}\label{commonfurtherassumptions} Often further assumptions are imposed on exterior differential systems. Here are some: \begin{itemize}% \item An exterior differential system is called \textbf{finitely generated} if there is a finite set $\{\theta_k \in \Omega^\bullet(X)\}$ of [[differential form]]s such that $J$ is the [[dg-ideal]] generated by these, so that \begin{displaymath} J = \{ \sum_i f_i \theta_i + \sum_j g_j d \theta_j| f_i, g_j \in C^\infty(X)\} \,. \end{displaymath} \item Often it is assumed that $J_0 = \mathbb{R}$. Dually in terms of [[Lie-∞-algebroids]] this assumption means that $J$ is the [[Chevalley-Eilenberg algebra]] of a [[Lie-∞-algebroid]] that is just an [[L-∞-algebra]]. \item \begin{defn} \label{}\hypertarget{}{} A \textbf{strict independence condition} on an exterior differential system $J \subset \Omega^\bullet(X)$ is an $n$-form $\omega \in \Omega^n(X)$ for some $n$ such that \begin{itemize}% \item $\omega$ is decomposable into a wedge product of $n$ 1-forms mod $J^n$ \item $\omega$ is pointwise not an element of $J$. \end{itemize} For $(J, \omega)$ am exterior differential system with strict independence condition $\omega$, an \textbf{integral manifold} is now more restrictively an integral manifold $\phi : \Sigma \to X$ for $J$ but now such that $\phi^* \omega$ is a volume form on $\Sigma$ (i.e. pointwise non-vanishing). \end{defn} \end{itemize} \hypertarget{special_cases}{}\section*{{special cases}}\label{special_cases} Some special types of exterior differential systems carry their own names. \hypertarget{frobenius_system}{}\subsection*{{Frobenius system}}\label{frobenius_system} A \textbf{Frobenius system} is an exterior differential system $J \subset \Omega^\bullet(X)$ that is locally generated as a graded-commutative algebra from a set $\{\theta_j \in \Omega^1(U)\}_j$ of 1-forms. Frobenius systems are in bijection with involutive subbundles of the [[tangent bundle]] of $X$, i.e. subbundles $E \hookrightarrow T X$ such that for $v,w \in \Gamma(E) \subset \Gamma(T X)$ also the Lie bracket of vector fields of $v$ and $w$ lands in $E$: $[v,w] \in \Gamma(E) \subset \Gamma(T X)$: \begin{itemize}% \item given a Frobenius system the sections of $\Gamma(E)$ are defined locally to be the joint [[kernel]] of the maps $\{\theta_i : \Gamma(T U) \to \mathbb{R}\}$. \item given ab involutive subbundle $E$ the corresponding Frobenius system is the collection of 1-forms that vanishes on $E$: $J = \{\theta \in \Omega^1(X) | \theta|_{E} = 0\}$. \end{itemize} Notice that the involutive subbundle may be thought of precisely as a sub-[[Lie algebroid]] \begin{displaymath} \itexarray{ E &&\hookrightarrow&& T X \\ & \searrow && \swarrow \\ && X } \end{displaymath} of the [[tangent Lie algebroid]] (i.e. as a sub [[Lie-∞-algebroid]] that happens to be an ordinary [[Lie algebroid]]). And indeed, the [[Chevalley-Eilenberg algebra]] of $E$ is the quotient $\Omega^\bullet(X)/J$ of the [[deRham dg-algebra]] by the Frobenius system: \begin{displaymath} CE(E) = \Omega^\bullet(X)/J \,. \end{displaymath} \hypertarget{vertical_tangent_lie_algebroid}{}\subsubsection*{{vertical tangent Lie algebroid}}\label{vertical_tangent_lie_algebroid} A special case of a [[Lie algebroid]] corresponding to a Frobenius system is the [[vertical tangent Lie algebroid]] $T_{vert} Y$ of a map $\pi : Y \to X$. This corresponds to the subbundle $ker(\pi_*) \subset T Y$ of vertical vector fields on $Y$, with respecct to $\pi$. The corresponding Frobenius system is that of \textbf{horizontal differential forms} \begin{displaymath} J = \Omega^\bullet_{hor}(Y) = \{\omega \in \Omega^1(Y)| \forall v \in ker(\pi_*): \omega(v) = 0\} \end{displaymath} and \begin{displaymath} CE(T_{vert} Y) = \Omega^\bullet(Y)/\Omega^\bullet_{hor}(Y) \end{displaymath} is the [[dg-algebra]] of \textbf{vertical differential forms} with respect to $Y$. This plays a central role in the theory of [[Ehresmann connection]]s and [[schreiber:Cartan-Ehresmann ∞-connection|Cartan-Ehresmann ∞-connection]]. \hypertarget{systems_of_partial_differential_equations}{}\subsection*{{systems of partial differential equations}}\label{systems_of_partial_differential_equations} A system \begin{displaymath} \{ F^\rho : \mathbb{R}^n \times \mathbb{R}^s \times \mathbb{R}^{n \cdot s} \to \mathbb{R} \}_\rho \end{displaymath} of [[partial differential equation]]s in terms of variables $\{x^\mu\}_{\mu = 1}^n$ and functions $\{f^i\}_{i = 1}^s$ of the form \begin{displaymath} \{ F^\rho((x^\mu), (f^i), \left(\frac{\partial f^i}{\partial x^\mu}\right)) = 0 \} \end{displaymath} is encoded by an exterior differential system on the 0-locus \begin{displaymath} X := \{(x,f,p) \in \mathbb{R}^n \times \mathbb{R}^s \times \mthbb{R}^{n s} | \forall \rho : F^\rho(x,f,p) = 0 \} \end{displaymath} of the $\{F^\rho\}_\rho$ (assuming that this is a manifold) with the [[dg-ideal]] $J = \langle \theta_i \rangle_i$ generated by the 1-forms \begin{displaymath} \theta^i := d f^i - \sum_{\mu=1}^n p^i_\mu d x^\mu \,. \end{displaymath} Namely a solution to the system of partial differential equations is precisely a [[section]] of the projection \begin{displaymath} X \to \mathbb{R}^n \end{displaymath} which defined an integral manifold of the exterior differential system. \hypertarget{references}{}\section*{{References}}\label{references} The standard textbook is \begin{itemize}% \item Bryant et al., \emph{Exterior differential systems} \end{itemize} Course note are provided in \begin{itemize}% \item Bryant, [[EDS-notes.pdf:file]] \end{itemize} [[!redirects exterior differential systems]] \end{document}