\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{factorization homology} \begin{quote}% Currently this entry consists mainly of notes taken live in a talk by [[John Francis]] at \href{http://maths-old.anu.edu.au/esi/2012/}{ESI Program on K-Theory and Quantum Fields} (2012), without as yet, any double-checking or polishing. So handle with care for the moment. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{aqft}{}\paragraph*{{AQFT}}\label{aqft} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_cobordism_hypothsis}{Relation to cobordism hypothsis}\dotfill \pageref*{relation_to_cobordism_hypothsis} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{dimension_1}{Dimension 1}\dotfill \pageref*{dimension_1} \linebreak \noindent\hyperlink{from_fold_loop_spaces}{From $n$-fold loop spaces}\dotfill \pageref*{from_fold_loop_spaces} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{videos}{Videos:}\dotfill \pageref*{videos} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Factorization homology} is a notion of [[homology theory]] for [[framed manifold|framed]] $n$-[[dimension|dimensional]] [[manifolds]] with coefficients in [[En-algebras]], due to (\hyperlink{Francis}{Francis}). It is similar in spirit to \emph{[[factorization algebras]]}, \emph{[[blob homology]]} and \emph{[[topological chiral homology]]}. In fact the definition of factorization homology turns out to be equivalent to that of topological chiral topology (\hyperlink{Francisb}{Francis b}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Write $Mfd_n^{\coprod}$ for the category of [[manifolds]] with [[embeddings]] as morphisms. This is naturally a [[topological category]], hence regard it as an [[(infinity,1)-category]]. Regard it furthermore as a [[symmetric monoidal (∞,1)-category]] with [[tensor product]] given by [[disjoint union]]. For $k$ a [[field]], write $Mod_k$ for the [[symmetric monoidal (∞,1)-category]] of $k$-[[chain complexes]]. Let $H(Mfd_n^{\coprod}, Mod_k)$ be the [[sub-(∞,1)-category]] of those [[monoidal (∞,1)-functors]] $F : Mfd_n^{op} \to Mod_k$ which are ``[[cosheaves]]'' in that for any decomposition of a manifold $X$ into submanifolds $X'$ and $X''$ with overlap $O$, we have an [[equivalence in an (∞,1)-category|equivalence]] \begin{displaymath} F(X) \simeq F(X') \otimes_{F(O)}F(X'') \,. \end{displaymath} Next, let $Disk_n \subset Mfd_n$ be the full [[sub-(∞,1)-category]] on those [[manifolds]] which are finite [[disjoint unions]] of the [[Cartesian space]] $\mathbb{R}^n$. Restriction along this inclusion gives an [[(∞,1)-functor]] \begin{displaymath} H(Mfd_n, Mod_k) \to Disk_n-Alg (Mod_k) \end{displaymath} This turns out to be an [[equivalence of (∞,1)-categories]]. The inverse is defined to be \emph{factorization homology} \begin{displaymath} FactorizationHomology : Disk_n-Alg (Mod_k) \to H(Mfd_n, Mod_k) \,. \end{displaymath} which sends an $n$-disk algebra $A : Disk_n \to Mod_k$ to the functor that sends a manifold $X$ to the [[derived functor|derived]] [[coend]] \begin{displaymath} \int^X A = \mathbb{E}_X \otimes_{Disk_n} A \end{displaymath} of $A$ with \begin{displaymath} \mathbb{E}_X : Disk_n \stackrel{Emb(-,X)}{\to} Top \stackrel{C_\bullet(-)}{\to} Mod_k \,. \end{displaymath} This is equivalent to [[topological chiral homology]], to be thought of as a topological version of [[chiral algebras]]. A version with values in [[homotopy types]] instead of chain complexes was given by Salvatore and [[Graeme Segal]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_cobordism_hypothsis}{}\subsubsection*{{Relation to cobordism hypothsis}}\label{relation_to_cobordism_hypothsis} From a functor $F \in H(Mfd_n, Mod_k)$ we get an [[extended TQFT]] with values in $k$-linear $(\infty,n)$-categories $Z_F : Bord_n \to Cat_n(k)$ which sends a $k$-manifold $X$ to $F(X \times \mathbb{R}^{n-k})$, regarded as a [[bimodule]] between the analogous boundary restriction, and hence as a [[n-morphism|k-morphism]] in $Cat_n(k)$. From a $Disk_n$-algebra $A$ we obtain the corresponding [[delooping]] $\mathbf{B}A \in (Cat_n(k)_{dualizable})^{O(n)}$ which is a $k$-linear [[(infinity,n)-category]] that is a [[fully dualizable object]]. The [[cobordism hypothesis]] identifies this with cobordism representations, and the claim is that this identification is compatible factorization homology. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{dimension_1}{}\subsubsection*{{Dimension 1}}\label{dimension_1} A $Disk_1$-algebra $A$ in $Mod_k$ is equivalently a [[differential graded algebra]]. The value of the corresponding $F_A \in H(Mfd_1, Mod_k)$ on the circle is the [[Hochschild homology]] of $A$ \begin{displaymath} \int_{S^1} A \simeq \int_{\mathbb{R}^1} A \otimes_{\int_{S^0 \times \mathbb{R}}A} \int_{\mathbb{R}^1} A \simeq HH_\bullet(A) \,. \end{displaymath} \hypertarget{from_fold_loop_spaces}{}\subsubsection*{{From $n$-fold loop spaces}}\label{from_fold_loop_spaces} Given a [[topological space]] $Z$ we get a $Disk_n$-algebra \begin{displaymath} Disk_n^\coprod \stackrel{Maps_{compact}(-,Z)}{\to} Top \stackrel{C_\ast(-)}{\to} Mod_k \end{displaymath} Where $Maps_{compact}(\mathbb{R}^n, Z) \simeq \Omega^n Z$ is the [[n-fold loop space]] of $Z$. \textbf{Theorem} (Salvatore and [[Jacob Lurie|Lurie]]) If $Z$ is $(n-1)$-[[n-connected object of an (infinity,1)-category]] \begin{displaymath} \int_X C_\ast(\Omega^n Z) \simeq C_\ast Maps_{compact}(X,Z) \,. \end{displaymath} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[topological chiral homology]], [[factorization algebra]], [[blob homology]] \item [[local net of observables]] \end{itemize} [[!include Isbell duality - table]] \hypertarget{References}{}\subsection*{{References}}\label{References} The definition appears in section 3 of \begin{itemize}% \item [[John Francis]], \emph{The tangent complex and Hochschild cohomology of $\mathcal{E}_n$-rings} (\href{http://arxiv.org/abs/1104.0181}{arXiv:1104.0181}) \end{itemize} A detailed account is in \begin{itemize}% \item [[John Francis]], \emph{Factorization homology of topological manifolds} (\href{http://de.arxiv.org/abs/1206.5522}{arXiv:1206.5522}) \end{itemize} A survey that also covers [[factorization algebras]] is \begin{itemize}% \item [[Grégory Ginot]], \emph{Notes on factorization algebras, factorization homology and applications}, \href{http://arxiv.org/abs/1307.5213}{arXiv:1307.5213}. \end{itemize} See also \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]}, section 5.3. \item [[Hiro Lee Tanaka]], \emph{Manifold calculus is dual to factorization homology}, at \href{http://math.mit.edu/conferences/talbot/2012/_2012.php}{Talbot 2012:\_ Calculus of functors} (\href{http://math.mit.edu/conferences/talbot/2012/notes/14_Tanaka_FactorizationHomology%28hiro%29.pdf}{pdf}) \end{itemize} Some applications are \begin{itemize}% \item [[Ben Knudsen]], \emph{Betti numbers and stability for configuration spaces via factorization homology}, \href{http://arxiv.org/abs/1405.6696}{arXiv:1405.6696}. \item [[Quoc Ho]], \emph{Densities and stability via factorization homology}, \href{https://arxiv.org/abs/1802.07948}{arXiv:1802.07948}. \end{itemize} Application to higher [[Hochschild cohomology]] is discussed in \begin{itemize}% \item [[Grégory Ginot]], Thomas Tradler, [[Mahmoud Zeinalian]], \emph{Higher Hochschild cohomology, Brane topology and centralizers of $E_n$-algebra maps}, (\href{http://arxiv.org/abs/1205.7056}{arXiv:1205.7056}) \item [[Geoffroy Horel]], \emph{Higher Hochschild homology of the Lubin-Tate ring spectrum}, \href{http://geoffroy.horel.org/HHC%20of%20the%20LT%20ring%20spectrum.pdf}{pdf}. \end{itemize} Application to stratified spaces with tangential structures is discussed in \begin{itemize}% \item [[David Ayala]], [[John Francis]], [[Hiro Lee Tanaka]], \emph{Factorization homology of stratified spaces}, (\href{http://arxiv.org/abs/1409.0848}{arXiv:1409.0848}) \end{itemize} A [[duality]] theorem for factorization homology, generalizing [[Poincare duality]] for [[manifolds]] and [[Koszul duality]] for [[E-n algebras]]. \begin{itemize}% \item [[David Ayala]], [[John Francis]], \emph{Poincar\'e{}/Koszul duality}, \href{http://arxiv.org/abs/1409.2478}{arXiv:1409.2478}. \end{itemize} Discussion in the context of [[extended TQFT]] appears in \begin{itemize}% \item [[Claudia Scheimbauer]], \emph{Factorization homology as a fully extended topological field theory} (\href{https://people.maths.ox.ac.uk/scheimbauer/ScheimbauerThesis.pdf}{pdf}) \end{itemize} \hypertarget{videos}{}\subsection*{{Videos:}}\label{videos} \begin{itemize}% \item \href{http://www.birs.ca/events/2015/5-day-workshops/15w5125/videos}{Videos from from the BIRS Workshop 15w5125} on \emph{Factorizable Structures in Topology and Algebraic Geometry}. \end{itemize} \end{document}