\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{factorization structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{factorization_structures_for_sinks_and_cosinks}{}\section*{{Factorization structures for sinks and cosinks}}\label{factorization_structures_for_sinks_and_cosinks} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{on_size_and_foundations}{On size and foundations}\dotfill \pageref*{on_size_and_foundations} \linebreak \noindent\hyperlink{constructions}{Constructions}\dotfill \pageref*{constructions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{_consists_of_monics}{$M$ consists of monics}\dotfill \pageref*{_consists_of_monics} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{factorization structure} is a strengthening of an [[orthogonal factorization system]] which allows us to factor, not only single [[morphisms]], but arbitrary [[sinks]] (or cosinks). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\{e_i \colon X_i \to Y\}_{i\in I}$ be a [[sink]] and $m\colon A \to B$ a [[morphism]] in some [[category]]. We say that $\{e_i\}$ is \emph{orthogonal} to $m$ if for any sink $\{f_i \colon X_i \to A\}_{i\in I}$ and morphism $g\colon Y\to B$ such that $m f_i = g e_i$ for all $i\in I$: \begin{displaymath} \itexarray{X_i & \overset{f_i}{\to} & A\\ ^{e_i}\downarrow && \downarrow^m\\ Y & \underset{g}{\to} & B} \end{displaymath} there exists a unique arrow $h\colon Y\to A$ such that $h e_i = f_i$ for all $i$ and $m h = g$. Clearly, if ${|I|}=1$ this reduces to the usual notion of orthogonality for morphisms. Let $(E,M)$ be an [[orthogonal factorization system|(orthogonal) factorization system]]; we say it extends to a \textbf{factorization structure for sinks} if every sink $\{f_i \colon X_i \to Y\}_{i\in I}$ can be factored as $f_i = m e_i$, where $m\in M$ and the sink $\{e_i \colon X_i \to Z\}_{i\in I}$ is orthogonal to $M$. Note there is no restriction on the sinks involved to be [[small category|small]]. Some authors write $\mathbf{E}$ for the collection of sinks orthogonal to $M$, and say that $(\mathbf{E},M)$ is a factorization structure for sinks, or that the category $C$ is an ``$(\mathbf{E},M)$-category''. However, since $\mathbf{E}$ is uniquely determined by $(E,M)$, and $E$ is precisely the 1-ary sinks in $\mathbf{E}$, there is little harm in saying that $(E,M)$ is a factorization structure for sinks. The dual notion is a \textbf{factorization structure for cosinks} (``sources''). \hypertarget{on_size_and_foundations}{}\subsubsection*{{On size and foundations}}\label{on_size_and_foundations} Observe that if $C$ is [[large category|large]], then the collection $\mathbf{E}$ contains [[proper classes]] as elements. Therefore, in some [[foundations]] such as [[ZF]], it is not definable as a single thing. In [[NBG]] one may treat it as a ``hyperclass'' defined by a first-order formula, in the same way that one treats classes in ZF. If we use a [[Grothendieck universe]] to define smallness, of course, there is no problem. \hypertarget{constructions}{}\subsection*{{Constructions}}\label{constructions} Many well-known factorization systems, and ways to construct factorization systems, extend to factorization structures for sinks and/or cosinks. \begin{itemize}% \item \href{/nlab/show/M-complete+category#ConstructingOFS}{This theorem} implies that if a category is [[M-complete category|M-complete]] for a class $M$ of morphisms which consists of monomorphisms and is closed under composition and pullback, then $M$ is the right class in a factorization structure for sinks. \item If $p\colon A\to B$ is a [[Grothendieck fibration]], then factorization structures for sinks can be lifted from $B$ to $A$. Dually, if $p$ is an opfibration, we can lift factorization structures for cosinks. For the ``mismatched'' types of lifting, we require more: $p$ must be a [[topological concrete category|topological functor]]. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[Set]], the factorization system (epi, mono) extends to both a factorization structure for sinks and one for cosinks. The epi-sinks are those that are jointly epimorphic, and the mono-sinks are those that are jointly monomorphic. \item By lifting (epi,mono) to [[Top]] (or any other topological category over $Set$), we obtain two factorization structures for sinks: (jointly surjective, subspace inclusions) and (final topologies, injections). Dually, we have two factorization structures for cosinks: (surjections, initial topologies) and (quotient maps, jointly injective). \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{_consists_of_monics}{}\subsubsection*{{$M$ consists of monics}}\label{_consists_of_monics} Recall that a factorization system $(E,M)$ is called \emph{proper} if $E\subseteq Epi$ and $M\subseteq Mono$. In the case of a factorization structure for sinks, the second of these is automatic. \begin{utheorem} If $(E,M)$ is a factorization structure for sinks, then $M$ consists of monomorphisms. \end{utheorem} \begin{proof} Let $m\colon A\to B$ be in $M$, and suppose that $m r = m s$ for some $r,s\colon X\to A$, but $r\neq s$. Consider the sink $\{m r: X \to B \}_{f\in Mor(C)}$ consisting of one copy of $m r$ ($= m s$) for each arrow of the ambient category $C$, and factor this sink as an $E$-sink $\{e_f\colon X \to Y\}_{f\in Mor(C)}$ followed by an $M$-morphism $n\colon Y\to B$. Now there are at least $2^{|Mor(C)|}$ different sinks $\{g_f\colon X \to A\}_{f\in Mor(C)}$ such that $m g_f = n e_f$, since we may take each $g_f$ to be either $r$ or $s$. Therefore, by orthogonality, there are at least $2^{|Mor(C)|}$ different morphisms $Y\to A$, a contradiction to [[Cantor's theorem]], since there can be at most $Mor(C)$. \end{proof} This proof is of course quite reminiscent of Freyd's theorem that any [[complete small category]] is a [[preorder]]. In fact, Freyd's theorem is a consequence of this one (or at least of its proof). For given a complete small category, there is a factorization structure acting at least on \emph{small} sinks, where $M$ is the class of all morphisms and $E$ the class of families of injections into coproducts. (Any complete small category is also cocomplete, by the [[adjoint functor theorem]].) Therefore, all morphisms in a complete small category are monic, including the unique maps to the [[terminal object]]; hence the category is a preorder. Since Freyd's theorem can fail in [[constructive mathematics]], we should expect the use of [[excluded middle]] to also be essential in proving the above property of factorization structures. [[!redirects factorization structures]] [[!redirects factorization structure for sinks]] [[!redirects factorization structure for sources]] [[!redirects factorization structure for cosinks]] [[!redirects factorization structures for sinks]] [[!redirects factorization structures for sources]] [[!redirects factorization structures for cosinks]] \end{document}