\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fan theorem} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{analysis}{}\paragraph*{{Analysis}}\label{analysis} [[!include analysis - contents]] \hypertarget{the_fan_theorem}{}\section*{{The fan theorem}}\label{the_fan_theorem} \noindent\hyperlink{introduction}{Introduction}\dotfill \pageref*{introduction} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{obfuscation}{Obfuscation}\dotfill \pageref*{obfuscation} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{use_in_analysis}{Use in analysis}\dotfill \pageref*{use_in_analysis} \linebreak \noindent\hyperlink{analysis_without_the_fan_theorem}{Analysis without the fan theorem}\dotfill \pageref*{analysis_without_the_fan_theorem} \linebreak \noindent\hyperlink{sheaf_models}{Sheaf models}\dotfill \pageref*{sheaf_models} \linebreak \noindent\hyperlink{proofs}{Proofs}\dotfill \pageref*{proofs} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{introduction}{}\subsection*{{Introduction}}\label{introduction} The fan theorem is one of the basic principles of [[intuitionism]] that make it more specific (even in [[mathematics|mathematical]] practice, independent of any [[philosophy|philosophical]] issues) than garden-variety [[constructive mathematics]]. Its main use is to justify pointwise [[analysis]]; without it, one really needs [[locale theory]] for [[point-free topology]] instead. In [[classical mathematics]], the fan theorem is [[true]]. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Consider the [[list|finite]] and [[infinite sequence|infinite]] sequences of [[binary digits]]. Given an infinite sequence $\alpha$ and a [[natural number]] $n$, let $\bar \alpha n$ be the finite sequence consisting of the first $n$ [[elements]] of $\alpha$. Let $B$ be a collection of [[finite set|finite]] sequences of bits (or \emph{bitlists}), that is a [[subset]] of the [[free monoid]] on the [[boolean domain]]. Given an infinite sequence $\alpha$ and a natural number $n$, we say that $\alpha$ \emph{$n$-bars} $B$ if $\bar \alpha n \in B$; given only $\alpha$, we say that $\alpha$ \emph{bars} $B$ if $\alpha$ $n$-bars $B$ for some $n$. We are interested in these three properties of $B$: \begin{itemize}% \item $B$ is \emph{[[decidable subset|decidable]]}: For every finite sequence $u$, either $u \in B$ or $u \notin B$. (This is trivial in [[classical logic]] but will hold constructively only for some subsets $B$.) \item $B$ is \emph{barred}: For every infinite sequence $\alpha$, $\alpha$ bars $B$. \item $B$ is \emph{uniform}: For some natural number $M$, for every infinite sequence $\alpha$, if $\alpha$ bars $B$ at all, then $\alpha$ $n$-bars $B$ for some $n \leq M$. \end{itemize} A \textbf{bar} is a barred subset $B$. \begin{utheorem} Every decidable bar is uniform. (In other words, if a collection of bitlists is decidable and barred, then it is also uniform.) \end{utheorem} Although the fan theorem is about bars, it is different from the [[bar theorem]], which is related but stronger. \hypertarget{obfuscation}{}\subsubsection*{{Obfuscation}}\label{obfuscation} Let $\mathbb{B}$ be the set $\{0,1\}$ of binary digits (bits) and $\mathbb{N}$ the set $\{0,1,2,\ldots\}$ of natural numbers (numbers). Given a [[set]] $A$, let $A^*$ be the set of finite sequences of elements of $A$, let $A^{\mathbb{N}}$ be the set of infinite sequences of elements of $A$, and let $\mathcal{P}_{\Delta}A$ be the set of decidable subsets of $A$. Then the fan theorem is about (elements of) $\mathbb{B}^*$, $\mathbb{B}^{\mathbb{N}}$, and $\mathcal{P}_{\Delta}\mathbb{B}^*$. However, the sets $\mathbb{N}$, $\mathbb{B}^*$, and $\mathbb{N}^*$ are all isomorphic. Similarly, the sets $\mathbb{B}^{\mathbb{N}}$, $\mathcal{P}_{\Delta}\mathbb{N}$, $\mathcal{P}_{\Delta}\mathbb{B}^*$, and $\mathcal{P}_{\Delta}\mathbb{N}^*$ are all isomorphic. In much of the literature on bars, one tacitly uses all of these isomorphisms, taking $\mathbb{N}$ and $\mathbb{B}^{\mathbb{N}}$ as chosen representatives of their isomorphism classes. Thus, everything in sight is either a natural number or an infinite sequence of bits. The fan theorem is hard enough to understand when $\alpha$ is an infinite sequence of bits and $\bar \alpha n$ is a finite sequence of bits; it is even harder to understand when $\bar \alpha n$ is a natural number that bears no immediate relationship to the digits in the sequence $\alpha$. \hypertarget{variations}{}\subsubsection*{{Variations}}\label{variations} The fan theorem may be stated about \emph{all} bars, not just the decidable ones: all bars are uniform (which is true in classical mathematics). Brouwer himself at one point claimed this, but later Kleene showed that this contradicted [[L.E.J. Brouwer|Brouwer]]'s [[continuity theorem]]. Since decidability is classically trivial, we may call this the \textbf{classical fan theorem}. \hypertarget{use_in_analysis}{}\subsection*{{Use in analysis}}\label{use_in_analysis} In [[classical mathematics]], the fan theorem is simply true. In [[constructive mathematics]], the fan theorem is equivalent to any and all of the following statements: \begin{itemize}% \item As a [[locale]], [[Cantor space]] has enough points (is [[topological locale|topological]]). \item As a [[topological space]], Cantor space is [[compact space|compact]]. \item As a topological space, the (located Dedekind) [[unit interval]] is [[compact space|compact]] (the [[Heine-Borel theorem|Heine–Borel theorem]]). \item As a topological space, the (located Dedekind) [[real line]] is [[locally compact space|locally compact]]. \item Every [[uniformly continuous map|uniformly continuous]] function from Cantor space to the [[metric space]] $\dot{\mathbb{R}}^+$ of positive real numbers has a positive lower bound. \item Every [[uniformly continuous map|uniformly continuous]] function from the unit interval to $\dot{\mathbb{R}}^+$ has a positive lower bound. \item (This item might need dependent choice in order to be equivalent to the others.) There exists a class of ``kontinuous'' [[partial functions]] from the set $\mathbb{R}$ of (located Dedekind) [[real numbers]] to itself (see Waaldijk) such that\begin{itemize}% \item the [[restriction]] of a kontinuous function to any smaller domain is kontinuous; \item the [[identity function]] on $\mathbb{R}$ is kontinuous; \item the [[composite]] of two kontinuous functions is kontinuous; \item a function whose domain is the unit interval is kontinuous \emph{if and only if} it is uniformly continuous (in the usual metric-space sense); and \item the function $(x \mapsto 1/x)$ defined on $\dot{\mathbb{R}}^+$ is kontinuous. \end{itemize} \end{itemize} It follows from any of these statements: \begin{itemize}% \item The [[bar theorem]] holds. \item As a locale, [[Baire space of irrational numbers|Baire space]] has enough points. \item Every pointwise-continuous function on Cantor space is uniformly continuous. \item Every pointwise-continuous function on the unit interval is uniformly continuous. \item Every [[uniformity]] (or indeed any [[metric]]) compatible with the usual topology of Cantor space is [[totally bounded space|totally bounded]]. \item The property of being ``complete and totally bounded'', i.e. [[Bishop-compact]], is invariant under topological homemorphism between uniform (or metric) spaces. \end{itemize} I need to figure out how it relates to the various versions of [[Konig's lemma|König's Lemma]], as well as these statements (which are mutually equivalent): \begin{itemize}% \item As a locale, the unit interval has enough points. \item As a locale, the [[real line]] (the [[locale of real numbers]]) has enough points. \end{itemize} Some of the results above may use [[countable choice]], but probably no more than $AC_{0,0}$ (which is choice for relations between $\mathbb{N}$ and itself). \hypertarget{analysis_without_the_fan_theorem}{}\subsubsection*{{Analysis without the fan theorem}}\label{analysis_without_the_fan_theorem} Point-wise real analysis without the fan theorem is very difficult, as shown by the example above from Waaldijk regarding ``kontinuous'' functions: without the fan theorem there isn't really even a good notion of continuity! This was [[L.E.J. Brouwer|Brouwer]]'s motivation for introducing the fan theorem. However, the fan theorem (and bar theorem) can be avoided by instead using [[locales]] or another [[point-free topology|point-free]] approach to analysis. \hypertarget{sheaf_models}{}\subsubsection*{{Sheaf models}}\label{sheaf_models} \hyperlink{FourmanHyland}{Fourman and Hyland} provide a sheaf model not satisfying the fan theorem. \hypertarget{proofs}{}\subsection*{{Proofs}}\label{proofs} I should write down the classical proof (which uses [[excluded middle]] and some form of [[dependent choice]]), as well as Brouwer's argument. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Thanks to Giovanni Curi on \href{http://groups.google.com/group/constructivenews/browse_thread/thread/9d57fa99e67e8782}{constructive news}. \item \href{http://www.fwaaldijk.nl/mathematics.html}{Frank Waaldijk} pointed out exactly why point-wise analysis needs the fan theorem. \end{itemize} I need to read the relevant parts here: \begin{itemize}% \item [[Mike Fourman]], R. Grayson, \emph{Formal Spaces}. In: The L.E.J. Brouwer Centenary Symposium, A.S. Troelstra and D. van Dalen, eds. North Holland (1982), pp. 107--122. \end{itemize} More links that I need to keep in mind: \begin{itemize}% \item \href{http://golem.ph.utexas.edu/category/2008/12/the_status_of_coalgebra.html}{http\char58\char47\char47golem\char46ph\char46utexas\char46edu\char47category\char47\char50\char48\char48\char56\char47\char49\char50\char47the\char95status\char95of\char95coalgebra\char46html} \item \href{http://www.jaist.ac.jp/is/labs/ishihara-lab/wcalm2010/berger.pdf}{http\char58\char47\char47www\char46jaist\char46ac\char46jp\char47is\char47labs\char47ishihara\char45lab\char47wcalm\char50\char48\char49\char48\char47berger\char46pdf} \item \href{http://www.cairn.info/revue-internationale-de-philosophie-2004-4-page-483.htm}{http\char58\char47\char47www\char46cairn\char46info\char47revue\char45internationale\char45de\char45philosophie\char45\char50\char48\char48\char52\char45\char52\char45page\char45\char52\char56\char51\char46htm} \end{itemize} Also: \begin{itemize}% \item [[Mike Fourman]], [[Martin Hyland]], \emph{Sheaf models for analysis}. \href{https://www.dpmms.cam.ac.uk/~martin/Research/Oldpapers/analysis79.pdf}{PDF} \end{itemize} [[!redirects fan theorem]] [[!redirects Fan theorem]] [[!redirects classical fan theorem]] \end{document}