\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fermionic path integral} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{setup}{Setup}\dotfill \pageref*{setup} \linebreak \noindent\hyperlink{pfaffian_bundles}{Pfaffian bundles}\dotfill \pageref*{pfaffian_bundles} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[path integral]] over the [[fermion]]ic variables of the standard kinetic [[action functional]] for [[fermion]]s (see for instance [[spinors in Yang-Mills theory]]) has a well-defined meaning as a [[section]] of the [[Pfaffian line bundle]] of the corresponding [[Dirac operator]]. \hypertarget{setup}{}\subsection*{{Setup}}\label{setup} For definiteness, we consider a [[sigma model]] [[quantum field theory]] on a worldvolume $\Sigma$ and [[pseudo-Riemannian manifold|pseudo-Riemannian]] target [[spacetime]] $X$ with fields \begin{itemize}% \item [[boson]]s: [[smooth function]]s $\phi : \Sigma \to X$ \item [[fermion]]s ([[gravitino]]): $\psi \in \Gamma(S(\Sigma) \otimes \phi^* T M)$, [[section]]s of the [[tensor product]] of a [[spinor bundle]] on $\Sigma$ and the [[pullback]] of the [[cotangent bundle]] of $X$ along the given bosonic field $\phi$. \end{itemize} The [[action functional]] \begin{displaymath} S : (\phi, \psi) \mapsto S^{bos}(\phi) + S^{ferm}_{\phi}(\psi) \end{displaymath} is the sum of the \begin{itemize}% \item bosonic action \begin{displaymath} S^{bos})(\phi) = \int_\Sigma \langle d \phi \wedge \star d \phi\rangle \end{displaymath} \item fermionic action \begin{displaymath} S^{ferm}_\phi(\psi) = \int_\Sigma \langle \psi, D_\phi \psi\rangle \end{displaymath} where $D_\phi$ is a [[Dirac operator]] on $S \otimes \phi^* T M$ (the Dirac operator on $S$ twisted by the pullback of the [[Levi-Civita connection]] on $T^* X$ ). \end{itemize} One imagines than that the hypothetical [[path integral]] symboilically written as \begin{displaymath} \int [d \phi] [d \psi] \exp(S(\psi)(\phi,\psi)) \end{displaymath} can be computed in two steps \begin{displaymath} \cdots = \int [d \phi] \exp(S^{bos}(\phi)) \left( \int [d \psi] \exp(S^{ferm}_\phi(\psi)) \right) \end{displaymath} by first computing the integral over the fermions \begin{displaymath} pfaff(\phi) := \int [d \psi] \exp(S^{ferm}_\phi(\psi)) \end{displaymath} and then inserting this into the remaining bosonic integral. Now, as opposed to the bosonic integral, this fermionic integral can be given well-defined sense by interpreting it as an infinite-dimensional [[Berezinian integral]]. However, while this makes the expression well defined, the result is not quite a function of $\phi$, but is instead a [[section]] $pfaff$ of a [[Pfaffian line bundle]] \begin{displaymath} \itexarray{ && Pfaff \\ {}^{pfaff := Z_{eff}^{ferm}}\nearrow & \downarrow \\ C^{\infty}(\Sigma, X) &= & C^{\infty}(\Sigma, X) } \end{displaymath} over the space of bosonic field configurations. If $Pfaff$ is not isomorphic to the trivial line bundle, we say the system has a fermionic [[quantum anomaly]]. If instead $Pfaff$ is trivializable, any choice of trivialization \begin{displaymath} t : Paff \stackrel{\simeq}{\to} C^\infty(\Sigma, X) \times \mathbb{C} \end{displaymath} makes the fermionic path integral into a genuine function \begin{displaymath} Z_{eff}^{ferm} : = (t \circ pfaff) : C^\infty(\Sigma, X) \to \mathbb{C} \,. \end{displaymath} Any such choice of $t$ is called a choice of [[quantum integrand]]. With this one can then try to enter the remaining bosonic path integral \begin{displaymath} \int [d \phi] \exp(S^{bos}(\phi)) Z_{eff}^{ferm}(\phi) \end{displaymath} \hypertarget{pfaffian_bundles}{}\subsection*{{Pfaffian bundles}}\label{pfaffian_bundles} \begin{quote}% We are implicitly assuming that $dim \Sigma = 2$ or maybe $8 n + 2$ in the following. Needs to be generalized. \end{quote} For $n \in \mathbb{N}$, there the [[square root]] of a skew symmetric $(n\times n)$-[[matrix]] $D$ -- the [[Pfaffian]] of the matric -- can be understood as the [[Berezinian integral]] \begin{displaymath} pfaff(D) = \int [d \vec \theta] \exp( \langle \theta , D \theta\rangle) \in det \mathbb{R}^n \end{displaymath} over the [[Grassmann algebra]] elements $\theta_i$. Written this way this is an element of the [[determinant line]] of $\mathbb{R}^n$: its identification with a number depends on the choice of basis for $\mathbb{R}^n$. For this case this is unproblematic, since there is a canonical choice of basis for the single vector space $\mathbb{R}^n$, but when $D$ instead depends on a parameter $\phi$, then in general its Pfaffian can at best be a section of a [[determinant line bundle]]. We now generalize this to the case that $D$ is not a finite-dimensional matrix, but a [[Dirac operator]] acting on spaces of sections of a [[spinor bundle]]. We discuss that we can reduce this ``infinite-dimensional matrix'' in a sense \emph{locally} to a finite dimensional one in a consistent way, such that the above ordinary construction of Pfaffians applies. In the above setup, write \begin{displaymath} \mathcal{H}_\phi^{\pm} := \Gamma(S^{\pm} \otimes \phi^* T^* X) \end{displaymath} for the space of spinor sections for given $\phi : \Sigma \to X$. Then the choral [[Dirac operator]]s a maps \begin{displaymath} D_\phi^{\pm} : \mathcal{H}_\phi^{\pm} \to \mathcal{H}^{\mp}_\phi \,. \end{displaymath} We also have a ``quaternionic structure'' \begin{displaymath} J_\phi^{\pm} : \mathcal{H}_\phi^{\pm} \to \mathcal{H}^{\mp}_\phi \end{displaymath} Define then an [[open cover]] of the space $C^\infty(\Sigma,X)$ of the space of bosonic fields with [[open set]]s $U_\mu$ for $(0 \leq \mu)$ given by \begin{displaymath} U_\mu := \{ \phi \in C^\infty(\Sigma,X) | \mu \nin Spec D_\phi^2\} \,, \end{displaymath} hence the collection of bosonic field configurations such that $\mu$ is not in the [[operator spectrum]] of the squared [[Dirac operator]]. Over these open subsets we have the \emph{finite} [[rank]] [[vector bundle]]s \begin{displaymath} \mathcal{H}_\phi^{\mu \pm} := \oplus_{0 \leq \epsilon \leq \mu} Eig(D_\phi^2, \epsilon) \end{displaymath} of [[eigenspace]]s of $D_\phi^2$ for [[eigenvalue]]s bounded by $\mu$. The Dirac operator that we are interested in is \begin{displaymath} D_\phi^\mu := J_\phi^- \circ D_\phi^+ : \mathcal{H}_\phi^{\mu,+} \to \mathcal{H}_\phi^{\mu,+} \,. \end{displaymath} This defines now a finite-dimensional [[matrix]] \begin{displaymath} \langle -, D_\phi^\mu -\rangle \end{displaymath} whose [[Berezinian integral]] is the [[Pfaffian]] \begin{displaymath} \int [d \psi] \exp(\langle \psi , D^\mu_\phi \phi \rangle ) = pfaff(D^\mu_\phi) \in det \mathcal{H}^{\mu \pi}_\phi \,. \end{displaymath} One shows that these constructions for each $\mu$ glue together to define \begin{itemize}% \item a smooth [[line bundle]] $Pfaff \to C^\infty(\Sigma, X)$ \item with a smooth [[section]] $pfaff(D)$. \end{itemize} Moreover, there is canonically a [[hermitean metric]] and a canonical unitary [[connection on a bundle]] (the [[Freed-Bismut connection]]) on this bundle. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} For the [[sigma model]] describing the [[brane|heterotic superstring]] propagating on a [[pseudo-Riemannian manifold]] $X$, the trivialization of the Pfaffian line bundle, hence the cancellation of its fermionic [[quantum anomaly]] is related to the existence of a (twisted) [[differential string structure]] on $X$. See there for more details. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[path integral]] \item [[spinors in Yang-Mills theory]] \end{itemize} [[!redirects fermionic path integrals]] \end{document}