\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fiber bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{bundle}{$G$-bundle}\dotfill \pageref*{bundle} \linebreak \noindent\hyperlink{principal_bundles}{$G$-principal bundles}\dotfill \pageref*{principal_bundles} \linebreak \noindent\hyperlink{structurepreserving_bundles}{Structure-preserving bundles}\dotfill \pageref*{structurepreserving_bundles} \linebreak \noindent\hyperlink{vector_bundles}{Vector bundles}\dotfill \pageref*{vector_bundles} \linebreak \noindent\hyperlink{associated_bundles}{Associated bundles}\dotfill \pageref*{associated_bundles} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{in_commutative_algebra}{In commutative algebra}\dotfill \pageref*{in_commutative_algebra} \linebreak \noindent\hyperlink{in_noncommutative_geometry}{In noncommutative geometry}\dotfill \pageref*{in_noncommutative_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{fibre bundle} or \textbf{fiber bundle} is a [[bundle]] in which every [[fibre]] is [[isomorphism|isomorphic]], in some coherent way, to a \textbf{standard fibre} (sometimes also called \textbf{typical fiber}). Though it is pre-dated by many examples and methods, systematic usage of locally [[trivial fibre bundles]] with structure groups in mainstream mathematics started with a famous book of Steenrod. One may say that `fibre bundles are [[fibrations]]' by the [[Milnor slide trick]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} In the most general sense, a \textbf{bundle} over an object $B$ in a [[category]] $C$ is a [[morphism]] $p: E \to B$ in $C$. In appropriate contexts, a \textbf{fibre bundle} over $B$ with standard fibre $F$ may be defined as a bundle over $B$ such that, given any [[global element]] $x: 1 \to B$, the [[pullback]] of $E$ along $x$ is isomorphic to $F$. Certainly this definition is appropriate whenever $C$ has a [[terminal object]] $1$ which is a [[separator]], as in a [[well-pointed category]]; even then, however, one often wants the more restrictive notion below. One often writes a typical fibre bundle in shorthand as $F \to E \to B$ or \begin{displaymath} \array { F & \rightarrow & E \\ & & \downarrow \\ & & B } \end{displaymath} even though there is not a single morphism $F \to E$ but instead one for each global element $x$ (and none at all if $B$ has no global elements!). If $C$ is a [[site]], then a \textbf{locally [[trivial fibre bundle]]} over $B$ with typical fibre $F$ is a bundle over $B$ with a [[cover]] $(j_\alpha: U_\alpha \to B)_\alpha$ such that, for each index $\alpha$, the pullback $E_\alpha$ of $E$ along $j_\alpha$ is isomorphic in the [[slice category]] $C/{U_\alpha}$ to the [[trivial bundle]] $U_\alpha \times F$ (a \emph{[[local trivialization]]}). One can also drop $F$ and define a slightly more general notion of \textbf{locally trivial bundle} over $B$ as a bundle over $B$ with a cover $(j_\alpha: U_\alpha \to B)_\alpha$ such that, for each index $\alpha$, there is a fibre $F_\alpha$ and an isomorphism in $C/{U_\alpha}$ between the pullback $E_\alpha$ and the trivial bundle $U_\alpha \times F_\alpha$. Every locally trivial fibre bundle is obviously a locally trivial bundle; the converse holds if $B$ is [[connected object|connected]]. Now suppose that $E$ is a fibre bundle over $B$ with standard fibre $F$, locally trivialised using the cover $(U_\alpha)_\alpha$. Given an index $\alpha$ and an index $\beta$, let $U_{\alpha,\beta}$ be the [[fibred product]] (pullback) of $U_\alpha$ and $U_\beta$. Then we have an [[automorphism]] $g_{\alpha,\beta}$ of $U_{\alpha,\beta} \times F$ in $C/{U_{\alpha,\beta}}$ as follows: (diagram to come) The $g_{\alpha,\beta}$ are the \textbf{transition morphisms} of the locally trivial fibre bundle $E$. Often one considers special kinds of bundles, by requiring structure on the standard fibre $F$ and/or conditions on the transition morphisms $g_{\alpha,\beta}$. For example: \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \hypertarget{bundle}{}\subsubsection*{{$G$-bundle}}\label{bundle} If $G$ is a [[group object]] in $C$ that [[action|acts]] on $F$, then a \textbf{$G$-bundle} (or bundle with \textbf{structure group} $G$) over $B$ with standard fibre $F$ is a locally trivial fibre bundle over $B$ with standard fibre $F$ together with morphisms $U_{\alpha,\beta} \to G$ that, relative to the action of $G$ on $F$, give the transition maps $g_{\alpha,\beta}$. (The morphism $U_{\alpha,\beta} \to G$ is also written $g_{\alpha,\beta}$, conflating action with application.) \hypertarget{principal_bundles}{}\subsubsection*{{$G$-principal bundles}}\label{principal_bundles} More specifically, a (right or left) \textbf{[[principal bundle|principal]] $G$-bundle} over $B$ is a $G$-bundle over $B$ with standard fibre $G$, associated with the action of $G$ on itself by (right or left) multiplication. \hypertarget{structurepreserving_bundles}{}\subsubsection*{{Structure-preserving bundles}}\label{structurepreserving_bundles} If $F$ is an object of a [[concrete category]] over $C$, then we can consider locally trivial fibre bundles with standard fibre $F$ such that the transition morphisms are structure-preserving morphisms. If the [[automorphism group]] $Aut(F)$ can be internalised in $C$, then this the same as an $Aut(F)$-bundle, but the concept makes sense in any case. \hypertarget{vector_bundles}{}\subsubsection*{{Vector bundles}}\label{vector_bundles} As a fairly specific example, if $F$ is a [[topological vector space]] (and $C$ is a category with structure to support this, such as [[Top]] or [[Diff]]), then a \textbf{[[vector bundle]]} over $B$ with standard fibre $F$ is a $GL(F)$-bundle over $B$ with standard fibre $F$, where $GL(F)$ is the [[general linear group]] with its defining action on $F$. \hypertarget{associated_bundles}{}\subsubsection*{{Associated bundles}}\label{associated_bundles} Given a right [[principal bundle|principal]] $G$-bundle $\pi: P\to X$ and a left $G$-space $F$, all in a sufficiently strong category $C$ (such as [[Top]]), one can form the [[quotient object]] $P\times_G F = (P\times F)/{\sim}$, where $P \times F$ is a [[product]] and $\sim$ is the smallest [[congruence]] such that (using [[generalized element]]s) $(p g,f)\sim (p,g f)$; there is a canonical projection $P\times_G F\to X$ where the class of $(p,f)$ is mapped to $\pi(p)\in X$, hence making $P\times_G F\to X$ into a fibre bundle with typical fiber $F$, and the transition functions belonging to the action of $G$ on $F$. We say that $P\times_G F\to X$ is the \textbf{[[associated bundle]]} to $P\to X$ with fiber $F$. \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} \hypertarget{in_higher_category_theory}{}\subsubsection*{{In higher category theory}}\label{in_higher_category_theory} In [[higher category theory]] the notion of fiber bundle generalizes. See \begin{itemize}% \item [[associated ∞-bundle]]. \end{itemize} \hypertarget{in_commutative_algebra}{}\subsubsection*{{In commutative algebra}}\label{in_commutative_algebra} Under the interpretation of \href{http://ncatlab.org/nlab/show/module#RelationToVectorBundlesInIntroduction}{modules as generalized vector bundles}, locally trivial fiber bundles correspond to \emph{[[locally free modules]]}. See there for more. \hypertarget{in_noncommutative_geometry}{}\subsubsection*{{In noncommutative geometry}}\label{in_noncommutative_geometry} In [[noncommutative geometry]] both principal and associated bundles have analogues. The principal bundles over noncommutative spaces typically have structure group replaced by a [[Hopf algebra]]; the most well-known class whose base is described by a single algebra are [[Hopf--Galois extensions]]; the global sections of the associated bundle are formed using cotensor product. Transition functions can be to some extent emulated using noncommutative localizations, which yield nonaffine generalizations of Hopf--Galois extensions. Another generalization is when Hopf--Galois extensions in the sense of comodule algebras are replaced by entwining structures with analogous Galois condition. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bundle]] \item \textbf{fiber bundle} / [[fiber ∞-bundle]] \begin{itemize}% \item [[associated bundle]] \item [[vector bundle]] \item [[sphere bundle]] \item [[equivariant bundle]] \item [[fiber bundles in physics]] \item [[Leray-Hirsch theorem]] \end{itemize} \item [[principal bundle]] / [[torsor]] / \textbf{associated bundle} \item [[principal 2-bundle]] / [[gerbe]] / [[bundle gerbe]] \item [[principal 3-bundle]] / [[bundle 2-gerbe]] \item [[principal ∞-bundle]] / [[associated ∞-bundle]] \item [[(∞,1)-vector bundle]] / [[(∞,n)-vector bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Norman Steenrod]], \emph{The topology of fibre bundles}, Princeton Mathematical Series \textbf{14}, 1951. viii+224 pp. \href{http://www.ams.org/mathscinet-getitem?mr=39258}{MR39258}; reprinted 1994 \item [[Dale Husemöller]], \emph{Fibre bundles}, McGraw-Hill 1966 (300 p.); Springer Graduate Texts in Math. \textbf{20}, 2nd ed. 1975 (327 p.), 3rd. ed. 1994 (353 p.) (\href{http://www.maths.ed.ac.uk/~aar/papers/husemoller}{pdf}) \item [[M M Postnikov]], \emph{ . IV. } (Lectures in geometry. Semester IV. Differential geometry.) Nauka, Moscow, 1988. 496 pp. \href{http://www.ams.org/mathscinet-getitem?mr=985587}{MR90h:53002} \item [[Dale Husemoeller]], [[Michael Joachim]], [[Branislav Jurčo]], [[Martin Schottenloher]], \emph{[[Basic Bundle Theory and K-Cohomology Invariants]]}, Lecture Notes in Physics, Springer 2008 (\href{http://www.mathematik.uni-muenchen.de/~schotten/Texte/978-3-540-74955-4_Book_LNP726corr1.pdf}{pdf}) \end{itemize} [[!redirects fibre bundle]] [[!redirects standard fiber]] [[!redirects standard fibre]] [[!redirects typical fiber]] [[!redirects typical fibre]] [[!redirects locally trivial fiber bundle]] [[!redirects locally trivial fibre bundle]] [[!redirects locally trivial bundle]] [[!redirects transition morphism]] [[!redirects transition map]] [[!redirects transition function]] [[!redirects G-bundle]] [[!redirects bundle with structure group]] [[!redirects fiber bundles]] [[!redirects fibre bundles]] [[!redirects standard fibers]] [[!redirects standard fibres]] [[!redirects typical fibers]] [[!redirects typical fibres]] [[!redirects locally trivial fiber bundles]] [[!redirects locally trivial fibre bundles]] [[!redirects locally trivial bundles]] [[!redirects transition morphisms]] [[!redirects transition maps]] [[!redirects transition functions]] [[!redirects G-bundles]] [[!redirects bundles with structure group]] [[!redirects bundles with structure groups]] [[!redirects locally trivial bundle]] [[!redirects locally trivial bundles]] [[!redirects locally trivial fiber bundle]] [[!redirects locally trivial fiber bundles]] \end{document}