\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{fiber integration} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_generalized_cohomology_via_pontryaginthom_collapse_maps}{In generalized cohomology via Pontryagin-Thom collapse maps}\dotfill \pageref*{in_generalized_cohomology_via_pontryaginthom_collapse_maps} \linebreak \noindent\hyperlink{along_maps_of_manifolds}{Along maps of manifolds}\dotfill \pageref*{along_maps_of_manifolds} \linebreak \noindent\hyperlink{along_representable_morphisms_of_stacks}{Along representable morphisms of stacks}\dotfill \pageref*{along_representable_morphisms_of_stacks} \linebreak \noindent\hyperlink{in_generalized_cohomology_by_umkehr_maps_via_abstract_duality}{In generalized cohomology by Umkehr maps via abstract duality}\dotfill \pageref*{in_generalized_cohomology_by_umkehr_maps_via_abstract_duality} \linebreak \noindent\hyperlink{abstract_duality_and_atiyahmilnorspanier_duality__pontryaginthom_collapse}{Abstract duality and Atiyah-Milnor-Spanier duality + Pontryagin-Thom collapse}\dotfill \pageref*{abstract_duality_and_atiyahmilnorspanier_duality__pontryaginthom_collapse} \linebreak \noindent\hyperlink{in_linear_homotopytype_theory}{In linear homotopy-type theory}\dotfill \pageref*{in_linear_homotopytype_theory} \linebreak \noindent\hyperlink{in_generalized_differential_cohomology}{In generalized differential cohomology}\dotfill \pageref*{in_generalized_differential_cohomology} \linebreak \noindent\hyperlink{InKKTheory}{In KK-theory}\dotfill \pageref*{InKKTheory} \linebreak \noindent\hyperlink{KKPushForwardAlongEmbedding}{Along an embedding}\dotfill \pageref*{KKPushForwardAlongEmbedding} \linebreak \noindent\hyperlink{KKPushforwardAlongSubmersion}{Along a proper submersion}\dotfill \pageref*{KKPushforwardAlongSubmersion} \linebreak \noindent\hyperlink{AlongAFibrationOfClosedSpinCManifolds}{Along a smooth fibration of closed $Spin^c$-manifolds}\dotfill \pageref*{AlongAFibrationOfClosedSpinCManifolds} \linebreak \noindent\hyperlink{#KKPushforwardAlongGeneralMap}{Along a general K-oriented map}\dotfill \pageref*{#KKPushforwardAlongGeneralMap} \linebreak \noindent\hyperlink{KKPushforwardAlongGeneralMap}{In twisted K-theory}\dotfill \pageref*{KKPushforwardAlongGeneralMap} \linebreak \noindent\hyperlink{of_cohesive_differential_form_data}{Of cohesive differential form data}\dotfill \pageref*{of_cohesive_differential_form_data} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{to_the_point}{To the point}\dotfill \pageref*{to_the_point} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesInKKTheory}{In noncommutative topology and KK-theory}\dotfill \pageref*{ReferencesInKKTheory} \linebreak \noindent\hyperlink{abstract_formulation}{Abstract formulation}\dotfill \pageref*{abstract_formulation} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Fiber integration} or \emph{push-forward} is a process that sends [[generalized cohomology]] classes on a [[bundle]] $E \to B$ of [[manifolds]] to cohomology classes on the base $B$ of the bundle, by \emph{evaluating them on each fiber} in some sense. This sense is such that if the cohomology in question is [[de Rham cohomology]] then fiber integration is ordinary [[integration]] of [[differential form]]s over the fibers. Generally, the fiber integration over a bundle of $k$-dimensional fibers reduces the degree of the cohomology class by $k$. Composing pullback of cohomology classes with fiber integration yields the notion of [[transgression]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_generalized_cohomology_via_pontryaginthom_collapse_maps}{}\subsubsection*{{In generalized cohomology via Pontryagin-Thom collapse maps}}\label{in_generalized_cohomology_via_pontryaginthom_collapse_maps} \hypertarget{along_maps_of_manifolds}{}\paragraph*{{Along maps of manifolds}}\label{along_maps_of_manifolds} Here is the rough outline of the construction via [[Pontryagin-Thom collapse maps]]. The basic strategy is this: \begin{enumerate}% \item start with a map $E \to B$ \item make $B$ bigger without changing its homotopy type such that the map from $E$ becomes an [[embedding]]; \item choose an [[orientation in generalized cohomology|orientation]] structure that makes the cohomology of $E$ equivalent to that of $Th(E)$ (the [[Thom isomorphism]]); \item compose the Thom isomorphism with the pullback along $B \to Th(E)$ to get an ``Umkehr'' map from cohomology of $E$ to cohomology of $B$. \end{enumerate} Now in detail. Let $p : E \to B$ be a [[bundle]] of smooth compact [[manifolds]] with typical [[fiber]] $F$. By the [[Whitney embedding theorem]] one can choose an embedding $e:E \hookrightarrow \mathbb{R}^n$ for some $n \in \mathbb{N}$. From this one obtains an embedding \begin{displaymath} (p,e) : E \hookrightarrow B \times \mathbb{R}^n \,. \end{displaymath} Let $N_{(p,e)} (E)$ be the [[normal bundle]] of $E$ relative to this embedding. It is a rank $n- dim F$ bundle over the image of $E$ in $B \times \mathbb{R}^n$. Fix a [[tubular neighbourhood]] of $E$ in $B \times \mathbb{R}^n$ and identify it with the total space of $N_{(p,e)}$. Then collapsing the whole $B \times \mathbb{R}^n - N_{(p,e)}(E)$ to a point gives the [[Thom space]] of $N_{(p,e)}(E)$, and the quotient map \begin{displaymath} B \times \mathbb{R}^n \to B \times \mathbb{R}^n / (B \times \mathbb{R}^n - N_{(p,e)}(E)) \simeq Th(N_{(p,e)}(E)) \end{displaymath} factors through the [[one-point compactification]] $(B \times \mathbb{R}^n)^*$ of $B \times \mathbb{R}^n$. Since $(B \times \mathbb{R}^n)^*\cong \Sigma^n B_+$, the $n$-fold [[suspension]] of $B_+$ (or, equivalently, the [[smash product]] of $B$ with the $n$-sphere: $\Sigma^n B_+= S^n \wedge B_+$), we obtain a factorization \begin{displaymath} B \times \mathbb{R}^n \to \Sigma^n B_+ \stackrel{\tau}{\to} Th(N_{(p,e)}(E)) \,, \end{displaymath} where $\tau$ is called the [[Pontrjagin-Thom collapse map]]. Explicitly, as sets we have $\Sigma^n B_+ \simeq B \times \mathbb{R}^n \cup \{\infty\}$ and $Th(N_{(e,p)}(E)) = N_{(e,p)} \cup \{\infty\}$, and for $U \subset \Sigma^n B_+$ a tubular neighbourhood of $E$ and $\phi : U \to N_{(e,p)}(E)$ an isomorphism, the map \begin{displaymath} \tau : \Sigma^n B_+ \stackrel{}{\to} Th(N_{(p,e)}(E)) \end{displaymath} is defined by \begin{displaymath} \tau : x \mapsto \left\{ \itexarray{ \phi(x) & | x \in U \\ \infty & | otherwise } \right. \,. \end{displaymath} Now let $H$ be some [[multiplicative cohomology theory]], and assume that the Thom space $Th(N_{(p,e)}(E))$ has an $H$-[[orientation in generalized cohomology|orientation]], so that we have a [[Thom isomorphism]]. Then combined with the [[suspension isomorphism]] the pullback along $\tau$ produces a morphism \begin{displaymath} \int_F : H^\bullet(E) \to H^{\bullet - dim F}(B) \end{displaymath} of cohomologies \begin{displaymath} \itexarray{ H^\bullet(E) \\ \downarrow^{\mathrlap{\simeq_{Thom}}{\to}} \\ H^{\bullet + n - dim F}(D(N_{(p,e)}(E)),S(N_{(p,e)}(E))) \\ \downarrow^{\mathrlap{\simeq}} \\ \tilde H^{\bullet + n - dim F}(Th(N_{(p,e)}(E))) & \stackrel{\tau^*}{\to} & \tilde H^{\bullet + n - dim F}(\Sigma^n B_+) \\ && \downarrow{\mathrlap{\simeq_{suspension}}} \\ && H^{\bullet - dim F}(B) } \,. \end{displaymath} This operation is independent of the choices involved. It is the \textbf{fiber integration} of $H$-cohomology along $p : E \to B$. \hypertarget{along_representable_morphisms_of_stacks}{}\paragraph*{{Along representable morphisms of stacks}}\label{along_representable_morphisms_of_stacks} The above definition generalizes to one of push-forward in generalized cohomology on [[stacks]] over [[SmthMfd]] along [[representable morphisms of stacks]]. (\ldots{}) \hypertarget{in_generalized_cohomology_by_umkehr_maps_via_abstract_duality}{}\subsubsection*{{In generalized cohomology by Umkehr maps via abstract duality}}\label{in_generalized_cohomology_by_umkehr_maps_via_abstract_duality} We discuss now a general abstract reformulation in terms of [[duality]] in [[stable homotopy theory]] and [[higher algebra]] of the above traditional constructions. \hypertarget{abstract_duality_and_atiyahmilnorspanier_duality__pontryaginthom_collapse}{}\paragraph*{{Abstract duality and Atiyah-Milnor-Spanier duality + Pontryagin-Thom collapse}}\label{abstract_duality_and_atiyahmilnorspanier_duality__pontryaginthom_collapse} \begin{defn} \label{SpanierDualityOperation}\hypertarget{SpanierDualityOperation}{} Write \begin{displaymath} D \coloneqq (-)^\vee\circ \Sigma^\infty_+ \coloneqq L_{whe} Top \to \mathbb{S}Mod \end{displaymath} for the [[Spanier-Whitehead duality]] map which sends a [[topological space]] first to its [[suspension spectrum]] and then that to its [[dual object]] in the [[(∞,1)-category of spectra]]. \end{defn} (\hyperlink{ABG11}{ABG 11, def 10.3}). \begin{prop} \label{}\hypertarget{}{} For $X$ a [[compact manifold]], let $X \to \mathbb{R}^n$ be an [[embedding]] and write $S^n \to X^{\nu_n}$ for the classical [[Pontryagin-Thom collapse map]] for this situation, and write \begin{displaymath} \mathbb{S} \to X^{-T X} \end{displaymath} for the corresponding [[looping]] map from the [[sphere spectrum]] to the [[Thom spectrum]] of the negative [[tangent bundle]] of $X$. Then [[Atiyah duality]] produces an [[equivalence]] \begin{displaymath} X^{- T X} \simeq D X \end{displaymath} which identifies the [[Thom spectrum]] with the [[dual object]] of $\Sigma^\infty_+ X$ in $\mathbb{S} Mod$ and this constitutes a [[commuting diagram]] \begin{displaymath} \itexarray{ && X^{- T X} \\ & \nearrow & \downarrow^{\mathrlap{\simeq}} \\ \mathbb{S} &\underset{D(X \to \ast)}{\to}& D X } \end{displaymath} identifying the classical [[Pontryagin-Thom collapse map]] with the abstract [[dual morphism]] construction of prop. \ref{SpanierDualityOperation}. More generally, for $W \hookrightarrow X$ an [[embedding]] of [[manifolds]], then [[Atiyah duality]] identifies the [[Pontryagin-Thom collapse maps]] \begin{displaymath} \mathbb{S} \to X^{-T X} \to W^{- T W} \end{displaymath} with the abstract [[dual morphisms]] \begin{displaymath} \mathbb{S} \to D X \to D W \,. \end{displaymath} \end{prop} (\hyperlink{ABG11}{ABG 11, prop. 10.5}). \begin{remark} \label{}\hypertarget{}{} Given now $E \in CRing_\infty$ an [[E-∞ ring]], then the [[dual morphism]] $\mathbb{S} \to D X$ induces under [[smash product]] a similar Pontryagin-Thom collapse map, but now not in [[sphere spectrum]]-[[(∞,1)-modules]] but in $E$-[[(∞,1)-modules]]. \begin{displaymath} E \to D X \otimes_{\mathbb{S}} E \,. \end{displaymath} The image of this under the $E$-[[generalized cohomology theory|cohomology]] functor produces \begin{displaymath} [D X \otimes_{\mathbb{S}} E, E] \to E \,. \end{displaymath} If now one has a [[Thom isomorphism]] ($E$-[[orientation in generalized cohomology|orientation]]) $[D X \otimes_{\mathbb{S}} E, E] \simeq [X,E]$ that identifies the cohomology of the dual object with the original cohomology, then together with produces the \textbf{Umkehr map} \begin{displaymath} [X,E] \simeq [D X \otimes_{\mathbb{S}} E, E] \to E \end{displaymath} that pushes the $E$-cohomology of $X$ to the $E$-cohomology of the point. Analogously if instead of the terminal map $X \to \ast$ we start with a more general map $X \to Y$. More generally a [[Thom isomorphism]] may not exists, but $[D X \otimes_{\mathbb{S}} E, E]$ may still be equivalent to a [[twisted cohomology]]-variant $[X,E]_{\chi}$ of $[X,E]$, namely to $[\Gamma_X(\chi),E]$, where $\chi \colon \Pi(X) \to E Line \hookrightarrow E Mod$ is an ([[flat (∞,1)-bundle|flat]]) $E$-[[(∞,1)-module bundle]] on $X$ and and $\Gamma \simeq \underset{\to}{\lim}$ is the [[(∞,1)-colimit]] (the [[generalized Thom spectrum]] construction). In this case the above yields a \emph{[[twisted Umkehr map]]}. \end{remark} (\hyperlink{ABG10}{ABG 10, 9.1}) \hypertarget{in_linear_homotopytype_theory}{}\paragraph*{{In linear homotopy-type theory}}\label{in_linear_homotopytype_theory} We may formulate the above still a bit more abstractly in [[linear homotopy-type theory]] (following \emph{[[schreiber:Homotopy-type semantics for quantization]]}). (\ldots{}) [[!include twisted generalized cohomology in linear homotopy type theory -- table]] (\ldots{}) \hypertarget{in_generalized_differential_cohomology}{}\subsubsection*{{In generalized differential cohomology}}\label{in_generalized_differential_cohomology} See \begin{itemize}% \item [[fiber integration in differential cohomology]] \begin{itemize}% \item [[fiber integration in ordinary differential cohomology]] \item [[fiber integration in differential K-theory]] \end{itemize} \end{itemize} \hypertarget{InKKTheory}{}\subsubsection*{{In KK-theory}}\label{InKKTheory} We discuss fiber integration/push-forward/[[Gysin maps]] in [[operator K-theory]], hence in [[KK-theory]] (\hyperlink{ConnesSkandalis84}{Connes-Skandalis 85}, \hyperlink{BMRS07}{BMRS 07, section 3}). For more see at \emph{[[fiber integration in K-theory]].} The following discusses KK-pushforward \begin{enumerate}% \item \emph{\hyperlink{KKPushForwardAlongEmbedding}{Along an embedding}} \item \emph{\hyperlink{KKPushforwardAlongSubmersion}{Along a submersion}} \item \emph{\hyperlink{AlongAFibrationOfClosedSpinCManifolds}{Along a fibration of closed spin{\tt \symbol{94}}c manifolds}} \item \emph{\hyperlink{KKPushforwardAlongGeneralMap}{Along a general K-oriented map}} \item \emph{\hyperlink{KKPushforwardAlongGeneralMap}{In twisted K-theory}} \end{enumerate} The construction goes back to (\hyperlink{Connes82}{Connes 82}), where it is given over smooth manifolds. Then (\hyperlink{ConnesSkandalis84}{Connes-Skandalis 84}, \hyperlink{HilsumSkandalis87}{Hilsum-Skandalis 87}) generalize this to maps between [[foliations]] by KK-elements betwen the [[groupoid convolution algebras]] of the coresponding [[holonomy groupoids]] and (\hyperlink{RouseWang10}{Rouse-Wang 10}) further generalize to the case where a [[circle 2-bundle]] twist is present over these foliations. A purely algebraic generalization to (K-oriented) maps between otherwise arbitrary [[noncommutative topology|noncommutative spaces]]/[[C\emph{-algebras]] is in (\hyperlink{BMRS07}{BMRS 07}).} \hypertarget{KKPushForwardAlongEmbedding}{}\paragraph*{{Along an embedding}}\label{KKPushForwardAlongEmbedding} (\href{ConnesSkandalis84}{Connes-Skandalis 84, above prop. 2.8}) Let $h \colon X \hookrightarrow Y$ be an [[embedding]] of [[compact topological space|compact]] [[smooth manifolds]]. The push-forward constructed from this is supposed to be an element in [[KK-theory]] \begin{displaymath} h! \colon KK_d(C(X), C(Y)) \end{displaymath} in terms of which the push-forward on [[operator K-theory]] is induced by postcomposition: \begin{displaymath} h_! \;\colon\; K^\bullet(X) \simeq KK_\bullet(\mathbb{C}, X) \stackrel{h!\circ (-)}{\to} KK_{\bullet+d}(\mathbb{C},Y) \simeq KK^{\bullet+d}(Y) \,, \end{displaymath} where $d = dim(X) - dim(Y)$. Now, if we could ``thicken'' $X$ a bit, namely to a [[tubular neighbourhood]] \begin{displaymath} h \;\colon\; X \hookrightarrow U \stackrel{j}{\hookrightarrow} Y \end{displaymath} of $h(X)$ in $Y$ without changing the K-theory of $X$, then the element in question will just be the KK-element \begin{displaymath} j! \in KK(C_0(U), C(Y)) \end{displaymath} induced directly from the [[C\emph{-algebra]] homomorphism $C_0(U) \to C(Y)$ from the [[algebra of functions]] [[vanishing at infinity]] of $U$ to functions on $Y$, given by extending these functions by 0 to functions on $Y$. Or rather, it will be that element composed with the assumed KK-equivalence} \begin{displaymath} \psi \colon C(X) \stackrel{\simeq_{KK}}{\to} C_0(U) \,. \end{displaymath} The bulk of the technical work in constructing the push-forward is in constructing this equivalence. (\hyperlink{BMRS07}{BMRS 07, example 3.3}) In order for it to exist at all, assume that the [[normal bundle]] \begin{displaymath} N_Y X \coloneqq h^\ast(T Y)/ T X \end{displaymath} has a [[spin{\tt \symbol{94}}c structure]]. Write $S(N_Y X)$ for the associated [[spinor bundle]]. Then there is an invertible element in [[KK-theory]] \begin{displaymath} \iota^X! \in KK_n(C(X), C_0(N_Y X)) \end{displaymath} hence a KK-equivalence $\iota^X! \colon C(X) \stackrel{\simeq}{\to} C_0(N_Y X)$, where $C_0(-)$ denotes the [[algebra of functions]] [[vanishing at infinity]]. This is defined as follows. Consider the pullback $\pi_n^\ast S(N_Y X) \to N_Y X$ of this spinor to the normal bundle itself along the projection $\pi_N \colon N_Y X \to X$. Then\ldots{} Moreover, a choice of a [[Riemannian metric]] on $X$ allows to find a [[diffeomorphism]] between the [[tubular neighbourhood]] $U_{h(X)}$ of $h(X)$ and a neighbourhood of the zero-section of of the normal bundle \begin{displaymath} \Phi \colon U_{h(X)} \hookrightarrow N_Y X \,. \end{displaymath} This induces a KK-equivalence \begin{displaymath} [\Phi] \colon C_0(N_Y X) \stackrel{\simeq_{KK}}{\to} C_0(U) \,. \end{displaymath} Therefore the push-forward in operator K-theory along $f \colon X \hookrightarrow Y$ is given by postcomposing in [[KK-theory]] with \begin{displaymath} h! \colon C(X) \underoverset{\simeq_{KK}}{i^X!}{\to} C_0(N_Y X) \underoverset{\simeq_{KK}}{\Phi}{\to} C_0(U) \stackrel{j!}{\to} C(Y) \,. \end{displaymath} \hypertarget{KKPushforwardAlongSubmersion}{}\paragraph*{{Along a proper submersion}}\label{KKPushforwardAlongSubmersion} (\href{ConnesSkandalis84}{Connes-Skandalis 84, above prop. 2.9}) For $\pi \colon X \to Z$ a [[K-orientation|K-oriented]] [[proper map|proper]] [[submersion]] of compact smooth manifolds, the push-forward map along it is reduced to the \hyperlink{KKPushForwardAlongEmbedding}{above} case of an embedding by \begin{enumerate}% \item using that by the [[Whitney embedding theorem]] every compact $X$ may be embedded into some $\mathbb{R}^{2q}$ such as to yield an embedding \begin{displaymath} h \colon X \to Z \times \mathbb{R}^{2 q} \end{displaymath} \item using that there is a KK-equivalence \begin{displaymath} \iota^Z! \colon C(Z) \stackrel{\simeq_{KK}}{\to} C_0(Z \times \mathbb{R}^{2q}) \,. \end{displaymath} \end{enumerate} The resulting push-forward is then given by postcomposition in [[KK-theory]] with \begin{displaymath} \pi! \colon C(X) \stackrel{h!}{\to} C_0(Z \times \mathbb{R}^{2}q) \underoverset{\simeq_{KK}}{(\iota^Z!)^{-1}}{\to} C(Z) \,. \end{displaymath} (\hyperlink{BMRS07}{BMRS 07, example 3.4}) \hypertarget{AlongAFibrationOfClosedSpinCManifolds}{}\paragraph*{{Along a smooth fibration of closed $Spin^c$-manifolds}}\label{AlongAFibrationOfClosedSpinCManifolds} Specifically, for $\pi \colon X \to Z$ a smooth fibration over a closed smooth manifold whose [[fibers]] $X/Z$ are \begin{itemize}% \item [[closed manifold|closed]] [[smooth manifolds|smooth]] [[spin{\tt \symbol{94}}c structure|spin{\tt \symbol{94}}c]] [[manifolds]] of even [[dimension]] \end{itemize} the push-forward element $\pi! \in KK(C_0(X), C_0(Z))$ is given by the [[Fredholm module|Fredholm]]-[[Hilbert module]] obatined from the fiberwise [[spin{\tt \symbol{94}}c Dirac operator]] acting on the fiberwise [[spinors]]. (\href{ConnesSkandalis84}{Connes-Skandalis 84, proof of lemma 4.7}, \href{BMRS07}{BMRS 07, example 3.9}). In detail, write \begin{displaymath} T(X/Z) \hookrightarrow T X \end{displaymath} for the sub-bundle of the total [[tangent bundle]] on the [[vertical vectors]] and choose a [[Riemannian metric]] $g^{X/Z}$ on this bundle (hence a collection of Riemannian metric on the fibers $X/Z$ smoothly varying along $Z$). Write $S_{X/Z}$ for the corresponding [[spinor bundle]]. A choice of horizontal complenet $T X \simeq T^H X \oplus T(X/Z)$ induces an [[affine connection]] $\nabla^{X/Z}$. This combined with the [[symbol map]]/Clifford multiplication of $T^\ast (X/Z)$ on $S_{X/Z}$ induces a fiberwise [[spin{\tt \symbol{94}}c Dirac operator]], acting in each fiber on the [[Hilbert space]] $L^2(X/Z, S_{X/Z})$. This yields a [[Fredholm module|Fredholm]]-[[Hilbert bimodule]] \begin{displaymath} (D_{X/Z}, L^2(X/Z, S_{X/Z})) \end{displaymath} which defines an element in [[KK-theory]] \begin{displaymath} \pi ! \in KK(C_0(X), C_0(Z)) \,. \end{displaymath} Postcompositon with this is the push-forward map in K/KK-theory, equivalently the [[index]] map of the collection of Dirac operators. \hypertarget{KKPushforwardAlongGeneralMap}{}\paragraph*{{Along a general K-oriented map}}\label{KKPushforwardAlongGeneralMap} (\href{ConnesSkandalis84}{Connes-Skandalis 84, def. 2.1}) Now for $f \colon X \to Y$ an arbitray [[K-orientation|K-oriented]] smooth proper map, we may reduce push-forward along it to the above two cases by factoring it through its [[graph map]], followed by projection to $Y$: \begin{displaymath} f \;\colon\; X \stackrel{graph(f)}{\to} X \times Y \stackrel{p_Y}{\to} Y \,. \end{displaymath} Hence push-forward along such a general map is postcomposition in [[KK-theory]] with \begin{displaymath} f! \coloneqq p_Y !\circ graph(f)! \,. \end{displaymath} (\hyperlink{BMRS07}{BMRS 07, example 3.5}) \hypertarget{KKPushforwardAlongGeneralMap}{}\paragraph*{{In twisted K-theory}}\label{KKPushforwardAlongGeneralMap} We discuss push forward in K-theory more generally by [[Poincaré duality C\emph{-algebras]] hence [[dual objects]] in [[KK-theory]].} Let $i \colon Q \to X$ be a map of [[compact topological space|compact]] [[manifolds]] and let $\chi \colon X \to B^2 U(1)$ modulate a [[circle 2-bundle]] regarded as a [[twisted K-theory|twist for K-theory]]. Then forming [[twisted groupoid convolution algebras]] yields a [[KK-theory]] morphism of the form \begin{displaymath} C_{i^\ast \chi}(Q) \stackrel{i^\ast}{\longleftarrow} C_{\chi}(X) \,, \end{displaymath} with notation as in \href{Poincaré+duality+algebra#CStarAlgebraOf2BundleOnManifold}{this definition}. By \href{Poincaré+duality+algebra#DualOfCompactManifoldWithTwist}{this proposition} the [[dual morphism]] is of the form \begin{displaymath} C_{\frac{W_3(\tau_Q)}{i^\ast \chi}}(Q) \stackrel{i_!}{\longrightarrow} C_{\frac{W_3(\tau_X)}{\chi}}(X) \,. \end{displaymath} If we assume that $X$ has a [[spin{\tt \symbol{94}}c structure]] then this is \begin{displaymath} C_{\frac{W_3(\tau_Q)}{i^\ast \chi}}(Q) \stackrel{i_!}{\longrightarrow} C_{\frac{1}{\chi}}(X) \,. \end{displaymath} Postcomposition with this map in [[KK-theory]] now yields a map from the $\frac{W_3(\tau_Q)}{i^\ast \chi}$-[[twisted K-theory]] of $Q$ to the $\chi^{-1}$-[[twisted K-theory]] of $X$: \begin{displaymath} i_! \colon K_{\bullet + W_3(\tau_Q) - i^\ast \chi}(Q) \to K_{\bullet -\chi} \,. \end{displaymath} If we here think of $i \colon Q \hookrightarrow X$ as being the inclusion of a [[D-brane]] [[worldvolume]], then $\chi$ would be the class of the [[background gauge field|background]] [[B-field]] and an element \begin{displaymath} [\xi] \in K_{\bullet + W_3(\tau_Q) - i^\ast \chi}(Q) \end{displaymath} is called (the K-class of) a \emph{[[Chan-Paton gauge field]]} on the D-brane satisfying the \emph{[[Freed-Witten-Kapustin anomaly cancellation]]} mechanism. (The orginal \emph{[[Freed-Witten anomaly cancellation]]} assumes $\xi$ given by a [[twisted unitary bundle|twisted line bundle]] in which case it exhibits a [[twisted spin{\tt \symbol{94}}c structure]] on $Q$.) Finally its [[fiber integration|push-forward]] \begin{displaymath} [i_! \xi] \in K_{\bullet- \chi}(X) \end{displaymath} is called the corresponding \emph{[[D-brane charge]]}. \hypertarget{of_cohesive_differential_form_data}{}\subsubsection*{{Of cohesive differential form data}}\label{of_cohesive_differential_form_data} In [[differential cohomology]] realized in [[cohesive homotopy type theory]] there is a canonical fiber integration map for the curvature coefficients of a given diffential cohomology theory. See at \emph{\href{integration+of+differential+forms#InCohesiveHomotopyTypeTheory}{integration of differential forms -- In cohesive homotopy-type theory}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{to_the_point}{}\subsubsection*{{To the point}}\label{to_the_point} When $B$ is a point, one obtains integration aginst the [[fundamental class]] of $E$, \begin{displaymath} \int_E:H^\bullet(E)\to H^{\bullet-dim E}(*) \end{displaymath} taking values in the coefficients of the given cohomology theory. Note that in this case $\Sigma^n B_+=S^n$, and this hints to a relationship between the Thom-Pontryagin construction and [[Spanier-Whitehead duality]]. And indeed [[Atiyah duality]] gives a homotopy equivalence between the [[Thom spectrum]] of the stable normal bundle of $E$ and the Spanier-Whitehead dual of $E$. \ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Grothendieck-Riemann-Roch theorem]] \item [[transfer context]], [[sheaf with transfer]], [[Becker-Gottlieb transfer]] \item [[geometric quantization by push-forward]] \item [[twisted Umkehr map]] \begin{itemize}% \item [[fiber integration in K-theory]] \end{itemize} \end{itemize} [[!include generalized fiber integration synonyms - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Frank Adams]], pages 25-27 in \emph{[[Stable homotopy and generalized homology]]}, Chicago Lectures in mathematics, 1974 \item [[Stanley Kochmann]], section 4.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \end{itemize} Fiber integration of differential forms is discussed in section VII of volume I of \begin{itemize}% \item [[Werner Greub]], [[Stephen Halperin]], [[Ray Vanstone]], \emph{[[Connections, Curvature, and Cohomology]]} Academic Press (1973) \end{itemize} A quick summary can be found from \href{http://www.math.wisc.edu/~gstgc/slides/Koytcheff.pdf#page=14}{slide 14} on in \begin{itemize}% \item [[Robin Koytcheff]], \emph{A homotopy-theoretic view of Bott-Taubes integrals} (\href{http://www.math.wisc.edu/~gstgc/slides/Koytcheff.pdf}{pdf slides}) \end{itemize} More details are in \begin{itemize}% \item [[Ralph Cohen]], [[John Klein]], \emph{Umkehr Maps} (\href{http://arxiv.org/abs/0711.0540}{arXiv:0711.0540}) \end{itemize} \hypertarget{ReferencesInKKTheory}{}\subsubsection*{{In noncommutative topology and KK-theory}}\label{ReferencesInKKTheory} Push-forward in [[twisted K-theory]] is discussed in \begin{itemize}% \item [[Alan Carey]], [[Bai-Ling Wang]], \emph{Thom isomorphism and Push-forward map in twisted K-theory} (\href{http://arxiv.org/abs/math/0507414}{arXiv:math/0507414}) \end{itemize} and section 10 of (\hyperlink{ABG10}{ABG, 10}) Discussion of fiber integration [[Gysin maps]]/Umkehr maps in [[noncommutative topology]]/[[KK-theory]] as \hyperlink{InKKTheory}{above} is in the following references. The definition of the element $f! \in KK(C(X), C(Y))$ for a $K$-oriented map $f \colon X \to Y$ between smooth manifolds goes back to section 11 in \begin{itemize}% \item [[Alain Connes]], \emph{A survey of foliations and operator algebras}, Proceedings of the A.M.S., 38, 521-628 (1982) (\href{http://www.alainconnes.org/docs/foliationsfine.pdf}{pdf}) \end{itemize} The functoriality of this construction is demonstrated in section 2 of the following article, which moreover generalizes the construction to maps between [[foliations]] hence to KK-elements between [[groupoid convolution algebras]] of [[holonomy groupoids]]: \begin{itemize}% \item [[Alain Connes]], [[Georges Skandalis]], \emph{The longitudinal index theorem for foliations}. Publ. Res. Inst. Math. Sci. 20, no. 6, 1139--1183 (1984) (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.4218}{web}) \end{itemize} More on this is in \begin{itemize}% \item [[Michel Hilsum]], [[Georges Skandalis]], \emph{Morphismes K-orient\'e{} d'espace de feuille et fonctoralit\'e{} en th\'e{}orie de Kasparov}, Annales scientifiques de l'\'E{}cole Normale Sup\'e{}rieure, S\'e{}r. 4, 20 no. 3 (1987), p. 325-390 (\href{http://www.numdam.org/item?id=ASENS_1987_4_20_3_325_0}{numdam}) \end{itemize} (the article that introuced [[Hilsum-Skandalis morphisms]]). This is further generalized to [[circle 2-bundle]]-twisted convolution algebras of foliations in \begin{itemize}% \item Paulo Carrillo Rouse, [[Bai-Ling Wang]], \emph{Twisted longitudinal index theorem for foliations and wrong way functoriality} (\href{http://arxiv.org/abs/1005.3842}{arXiv:1005.3842}) \end{itemize} Dicussion for general [[C\emph{-algebras]] is in section 3 of} \begin{itemize}% \item Jacek Brodzki, [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{Noncommutative correspondences, duality and D-branes in bivariant K-theory}, Adv. Theor. Math. Phys.13:497-552,2009 (\href{http://arxiv.org/abs/0708.2648}{arXiv:0708.2648}) \end{itemize} and specifically including also [[twisted K-theory]] again (and the relation to [[D-brane charge]]) in section 7 of \begin{itemize}% \item Jacek Brodzki, [[Varghese Mathai]], [[Jonathan Rosenberg]], [[Richard Szabo]], \emph{D-Branes, RR-Fields and Duality on Noncommutative Manifolds}, Commun. Math. Phys. 277:643-706,2008 (\href{http://arxiv.org/abs/hep-th/0607020}{arXiv:hep-th/0607020}) \end{itemize} \hypertarget{abstract_formulation}{}\subsubsection*{{Abstract formulation}}\label{abstract_formulation} The abstract formulation in [[stable homotopy theory]] via [[(infinity,1)-module bundles]] is sketched in section 9 of \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Twists of K-theory and TMF}, in Robert S. Doran, Greg Friedman, [[Jonathan Rosenberg]], \emph{Superstrings, Geometry, Topology, and $C^*$-algebras}, Proceedings of Symposia in Pure Mathematics \href{http://www.ams.org/bookstore-getitem/item=PSPUM-81}{vol 81}, American Mathematical Society (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \end{itemize} and in section 10 of \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map} (\href{http://arxiv.org/abs/1112.2203}{arXiv:1112.2203}) \end{itemize} This is reviewed and used also in \begin{itemize}% \item [[Joost Nuiten]], \emph{[[schreiber:master thesis Nuiten|Cohomological quantization of boundary prequantum field theory]]}, MSc thesis, Utrecht 2013 \end{itemize} Formulation of this in [[linear homotopy-type theory]] is discussed in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Homotopy-type semantics for quantization]]} \end{itemize} [[!redirects umkehr map]] [[!redirects umkehr maps]] [[!redirects Umkehr map]] [[!redirects Umkehr maps]] [[!redirects fiber integration in generalized cohomology]] [[!redirects integration in generalized cohomology]] [[!redirects push-forward in generalized cohomology]] [[!redirects pushforward in generalized cohomology]] [[!redirects fiber integral]] [[!redirects fiber integrals]] [[!redirects fiberwise integral]] [[!redirects fiberwise integrals]] \end{document}